بررسی تاثیر مدل ماده آستر (Liner) در شبیه سازی پرتابه های شکل یافته انفجاری (EFP)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری تبدیل انرژی، بخش مهندسی مکانیک، دانشگاه تربیت مدرس،

2 دانشیارمهندسی مکانیک، بخش مهندسی مکانیک، دانشگاه تربیت مدرس،

چکیده

هدف این مقاله بررسی تاثیر مدل ماده فلزی آستر بر شکل نهایی و نتایج بدست آمده از شبیه­سازی پرتابه شکل­یافته انفجاری یا EFP می باشد. مدل­های ماده در نظر گرفته شده شامل سه مدل جانسون – کوک ، اشتنبرگ و زریلی- آرمسترونگ است. نتایج حاصل نشان می­دهد که هر سه مدل یادشده دارای دقت بسیار خوبی در شبیه سازی EFP می­باشند. از میان این مدل­ها، نتایج مدل زریلی- آرمسترونگ دارای دقت بیشتری در تعیین شکل پرتابه و مدل های اشتنبرگ و جانسون- کوک نیز طول پرتابه را با دقت بیشتری نشان می­دهند. سرعت بدست آمده از هر سه مدل اختلاف اندکی با مقادیر تجربی دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Liner Material Model on Explosively Formed Projectiles (EFP) Simulation

نویسندگان [English]

  • Pejman Kazempoor1 1
  • Keumars Mazaheri 2
چکیده [English]

In this paper, the effect of the liner material model on the result of numerical simulation of Explosively Formed Projectile (EFP) is examined. Johnson-Cook, Steinberg, and Zerilli – Armstrong models are used for the simulation. All models are shown that have a good agreement with the experimental results. Zerilli – Armstrong model predicts final EFP shape with more accuracy in comparison with the other models. The results of simulations indicate that Johnson-Cook and Steinberg models predict the projectile length better than Zerilli – Armstrong model. The velocity of projectile predicted by all models agrees well with the experimental measurement.

کلیدواژه‌ها [English]

  • Explosively formed projectile (EFP)
  • material model
  • LS-DYNA
[1] انبارلویی،حمیدرضا؛ مظاهری، کیومرث؛ "مقایسه مدل های اشتنبرگ و جانسون کوک در بررسی رفتار -فلزات تحت تاثیر امواج ضربه ای"، فنی و مهندسیمدرس، ویژه نامه مهندسی مکانیک، شماره 17 ، ص 19، 1383
[2] Jones O.E., “Metal Response under Explosive Loading”, Behavior and Utilization of Explosive in Engineering Design, 12th Annual Symposium, New Mexico, 1993.
[3] Davison L. and Graham R.A.; “Shock Compression of Solids,” PHYSICS REPORTS. Vol. 55, No.4, 1979.
[4] Wilkins, M.L.; “Numerical Simulation of Dynamic Phenomena”, Springer, New York, 1998.
[5] Steinberg D.J. and Al.; “A Constitutive Model For Metals Applicable At High Strain Rate”; J. Appl. Phys.; Vol.51;No.3; Pp. 1498-1504; 1981.
[6] Johnson, G. And Cook, W. H., “Constitutive Model And Data For Metals Subjected To Large Strains”, High Strain Rates And High Temperatures; Proceedings Of The Seventh International Symposium On Ballistics; Pp. 541-P547; 1983.
[7] Zerilli, F.J and Armstrong, R.W; “Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations”, J.Appl.Phys, Vol.61; No.5; 1987.
[8] Carleone, J., “Tactical Missile Warheads”, Volume 155, American Institute of Aeronautics and Astronautics;1993.
[9] Hallquist, J. O.; “Ls- Dyna 960 Theoretical Manual”, Livermore Software Technology Corporation.
[10] Hydrosoft web page; http://www.hydrosoft.com
[11] Murphy, M.J.; Weimann, K.; Doeringsfeld, K.; “The Effect of Explosive Detonation Wave Shaping on EFP Shape and Performance”, 13th International Symposium on Ballistics; Stockholm; 1992.
[12] Murphy, M.J and Lassila, D.H; “Modeling and Evaluation of HE Driven Shock Effects In Copper With The MTS Model”, Lawrence Livermore Laboratory Repor; UCRL-JC-125679; 1997.
[13] Murph, M.J ; Weinmann, K; Doeringsfeld, K; and Speck, J; “The Effect Of Explosive Detonation Wave Shaping On EFP Shape And Performancel”,Lawrence Livermore Laboratory Report; UCRL-JC-107088; 1997.