شناسایی مدل غیر خطی آیرودینامیک هواپیما در مانور اسپین با استفاده از مدل چند نقطه‌ای توسعه یافته

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی هوا فضا، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

در این تحقیق مدل آیرودینامیکی چند نقطه ای توسعه یافته بر پایه تئوری استریپ برای محاسبه و تخمین پارامترهای پروازی در رژیم پروازی کاملاغیر خطی اسپین که توام با زاویه حمله بالا و نیز نرخ چرخش بالا می ­باشد، ارایه می­ گردد. برای فرآیند شناسایی، تکنیک تخمین استفاده شده رگرسیون حداکثر شباهت با دیدگاه خطای معادله می­ باشد. هدف از این مطالعه استخراج مدل ریاضی آیرودینامیک غیر خطی مناسب برای پدیده اسپین که از غیر خطی ترین و غیر قابل پیش بینی­ ترین مانورهای پروازی است، می­ باشد. از آنجایی که در پدیده اسپین رفتار هر سطح از هواپیما متفاوت با سطح دیگر است، مزیت مدل استخراج شده با استفاده از دیدگاه مدل سازی چند نقطه­ ای در این است که به هر نیروی آیرودینامیکی تولید شده توسط هر سطح جداگانه اجازه می ­دهد تا بطور مستقل در رابطه نیرو و گشتاور کل شرکت کند بجای آنکه مقدار میانگینی با توجه به موقعیت مرکز جرم در نظر گرفته شود. مدل استخراج شده به دو ست داده ­های واقعی اندازه گیری شده از پرواز تست اسپین اعمال شده و نتایج نشان دهنده تولید دوباره نیروها و گشتاورهای تولید شده در یک مانور اسپین دیگر با دقت بسیار بالا تر در مقایسه با روش بسط سری تیلور و نیز مدل چند نقطه­ ای ساده می باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Airplane Nonlinear Aerodynamic Model Identification in Spin Maneuver by Using Extended Multi Input Approach

نویسندگان [English]

  • A. Mokhtari
  • M. Sabzeh Parvar
Department of Aerospace Engineering, Amirkabir University of Technology, Tehran, Iran
چکیده [English]

In this paper application of the multipoint aerodynamic model for parameter estimation in spin maneuver as a high-angle-of-attack and high-angular-rate fight regime was concentrated. The identification technique used to illustrate the approach is maximum likely hood with the equation error approach. The multipoint model comprises a set of new parameters describing the aerodynamic force distribution along individual surface components of the aircraft so using this method will be useful for spin aerodynamic modelling. The aim of this study is to demonstrate that this model allows coupling among the three force and three moment components, this means that the parameters associated with the six-component equations are thus treated simultaneously. Another advantage of this approach is that the model allows each individual force generating surface element of the aircraft to contribute independently to the total force and moment rather than some average of these contributions relative to the center of mass. The method is applied to measurements from spin fight test data conducted with a light general aviation aircraft and the results compared with conventional aerodynamic model. The results indicate that the method is capable of reproducing, with reasonable accuracy, the force and moment measurements obtained from a fight other than the one used in the parameter estimation.

کلیدواژه‌ها [English]

  • Spin maneuver
  • Aerodynamic model
  • Multi input model
  • output equation error
[1] Bryen. G. H, Stability in Aviation, Macmillan, London, 1911.
[2] Rodbari. Ali, Sagafi. Fariborz, Airplane dynamic intelligent modeling by flight data, Master's Thesis in Aerospace Department Sharif University of Technology, Tehran, 2006 (In Persian).
[3] Glauert. H, Analysis of Phugoids Obtained by Recording Airspeed Indicator, Aeronautical Research Council R&M 576, 576 (Jan1919).
[4] Norton. F. H, The Measurement of the Damping in Roll on a JN4h in Flight, NACA Rept. 170 (1923).
[5] Klein. V, Estimation of Aircraft Aerodynamic Parameters from Flight-Test Data, Progress in Aerospace Sciences, 26)1) (1989) 1 – 77.
[6] Youssef. H. M, Juamg. J. C, Estimation of Aerodynamic Coefficients Using Neural Networks, AIAA paper , AIAA-93-3639-CP (Aug 1993).
[7] Hess. R. A, On the Use of Back Propagation with Feed Forward Neural Networks for the Aerodynamic Estimation Problem, AIAA paper, AIAA- 93-36380-CP (Aug1993).
[8] Lines. D. J, Stengel. R. F, Identification of Aerodynamic Coefficients Using Computational Neural Networks, Journal of Guidance, Control and Dynamics, 16(6) (1993) 1018-1025.
[9] Rokhsaz. K, Steck. J. E,USE of Neural Network in control of High-Alpha maneuvers, Journal of Guidance, Control and Dynamics, 16(5) (1993) 934-939.
[10] Pamadi. B. N, Taylor. Jr, Estimation of Aerodynamic Forces and Moments on a Steadily Spinning Airplane, Journal of Aircraft, 21(12) (1984) 943-958.
[11] Jaramillo. P. T, Cho. Y and Nagati. M. G, Validation of a Multipoint Approach for Modeling Spin Aerodynamics, Journal of Aircraft, 32(6) (1995) 1409 – 1412.
[12] Cho. Y, Nagati. M. G and Jaramillo. P. T, Parameter Estimation with a Multi-Point Model, AIAA Paper, AIAA- 95-3498-CP (Aug. 1995).
[13] Jaramillo. P. T, A Multi-Point Model for the Analysis of Aircraft Motion in Complex Flow-Fields, Ph.D. Dissertation Dept. of Aerospace Engineering, Wichita State Univ, Wichita, KS, (May. 1994).
[14] Jaramillo. P. T, Cho. Y and Nagati. M. G, Multipoint Approach for Aerodynamic Modeling in Complex Flow. Elds, Journal of Aircraft, 32(6) (1995) 1335 – 1341.
[15] Yongseun. Cho and M. G. Nagati,, Coupled Force and Moment Parameter Estimation for Aircraft, Journal Of Aircraft, 35(2) (1998) 247-260.
[16] Cho. Y, Coupled Force and Moment Parameter Estimation for Aircraft, Ph.D. Dissertation in Dept. of Aerospace Engineering, Wichita State Univ, Wichita, KS, (May 1996).
[17] Rajesh. A. K, Das. S, Sinha. M, Aircraft Parameter Estimation Using Neural Network, Journal of Department of Aerospace Engineering, IIT Kharagpur, 91 (2010) 271-302.
[18] Girish. Chowdharya, Ravindra. Jategaonkarb, Aerodynamic parameter estimation from flight data applying extended and unscented Kalman filter, Aerospace Science and Technology, 14(2) (March 2010) 106–117.
[19] WANG. Qinga, W. U. Kaiyuanb, ZHANG. Tianjiaoa, KONG. Yi’nana, QIAN. Weiqi, Aerodynamic Modeling and Parameter Estimation from QAR Data of an Airplane Approaching a High-altitude Airport, Chinese Journal of Aeronautics 25 (2012) 361-371.
[20] S. J. Mohammadi, M. Sabzehparvar, M. Karrari, Aircraft stability and control model using wavelet transform, Proceeding of the Institution of Mechanical Engineers, 224(10) (2010) 1107-117.
[21] S. Bagherzade, M. Sabzehparvar, Estimation of flight modes with Hilbert-Huang transform, Aircraft Engineering and Aerospace Technology Journal, 87(5) (2015) 402 – 417.
[22] M. Mokhtari, M. Sabzehparvar, Nonlinear Estimation of Flight Mode characteristics in Spin Maneuver by using Empirical Mode Decomposition Algorithm and Hilbert Transform, Tarbiate Modarres journal of mechanic, 17(1) (2017) 322-323 (In Persian).
[23] Stough. H. P, Patton. J, M. Jr and Sliwa. S. M, Flight Investigation of the Effect of Tail Configuration on Stall, Spin, and Recovery Characteristics of a Low-Wing General Aviation Research Airplane, NASA TP-2644, (Feb. 1987).
[24] M. Karrari, System Identification, Amir Kabir University Publication,Tehran, (2011) 175-183 (In Persian).
[25] Bihrle. W, Jr. Barnhart, B Pantason. P, Static Aerodynamic Characteristics of a Typical Single-Engine Low Wing General Aviation Design for an Angle of Attack Range of 28 to 90, NASA CR- 2971, (July. 1978).