[1] M.S. Darwish, J.R. Whiteman, M.J. Bevis, Numerical modelling of viscoelastic liquids using a finite-volume method, J. Non-Newton. Fluid Mech., 45(3) (1992) 311- 337.
[2] K.A. Missirlis, D. Assimacopoulos, E. Mitsoulis, A finite volume approach in the simulation of viscoelastic expansion flows, J. Non-Newton. Fluid Mech., 78(2) (1998) 91-118.
[3] M. Norouzi, M.M. Shahmardan, A. Shahbani Zahiri, Bifurcation phenomenon of inertial viscoelastic flow through gradual expansions, Rheologica Acta, 54(5) (2015) 423-435.
[4] M.M. Shahmardan, M. Norouzi, H. Hassanzadeh, A. Shahbani Zahiri, The influence of elastic property and inertial force on the length of vortices in viscoelastic fluid flow inside planar channel with the gradual expansion, Modares Mech. Eng., 15(4) (2015) 281-291. (in Persian)
[5] M. Norouzi, A. Shahbani Zahiri, M.M. Shahmardan, H. Hassanzadeh, M. Davoodi, Investigation of stresses and normal stress differences behavior on symmetric and asymmetric polymeric fluid flow through planar gradual expansions, Meccanica, 52(8) (2017) 1889-1909.
[6] M. Norouzi, A. Shahbani Zahiri, M.M. Shahmardan, H. Hassanzadeh, Z. Talebi, A numerical study on pressure losses in asymmetric viscoelastic flow through symmetric planar gradual expansions, Eur. J. Mech. B Fluids, 65 (2017) 199-212.
[7] F.T. Pinho, P.J. Oliveira, Analysis of forced convection in pipes and channels with the simplified Phan-Thien– Tanner fluid, Int. J. Heat Mass Transf., 43(13) (2000) 2273-2287.
[8] J.M. Nóbrega, F.T.d. Pinho, P.J. Oliveira, O.S. Carneiro, Accounting for temperature-dependent properties in viscoelastic duct flows, Int. J. Heat Mass Transf., 47(6) (2004) 1141-1158.
[9] M. Norouzi, M.H. Kayhani, M.R.H. Nobari, Mixed and forced convection of viscoelastic materials in straight duct with rectangular cross section, World Appl. Sci. J., 7(3) (2009) 285-296.
[10] A. Jalali, M.A. Hulsen, M. Norouzi, M.H. Kayhani, Numerical simulation of 3D viscoelastic developing flow and heat transfer in a rectangular duct with a nonlinear constitutive equation, Korea-Australia Rheol. J., 25(2) (2013) 95-105.
[11] M. Norouzi, Analytical solution for the convection o Phan-Thien-Tanner fluids in isothermal pipes, Int. J. Therm. Sci., 108 (2016) 165-173.
[12] A. Montahaee, M.M. Shahmardan, M. Norouzi, The numerical simulation of flow and heat transfer of temperature dependent properties of viscoelastic fluid in an axisymmetric sudden expansion, Modares Mech. Eng., 16(12) (2016) 39-49. (in Persian)
[13] M.F. Letelier, C.B. Hinojosa, D.A. Siginer, Analytical solution of the Graetz problem for non-linear viscoelastic fluids in tubes of arbitrary cross-section, Int. J. Therm. Sci., 111 (2017) 369-378.
[14] M. Vaz Jr, P.S.B. Zdanski, A fully implicit finite difference scheme for velocity and temperature coupled solutions of polymer melt flow, Commun. Numer. Methods Eng., 23(4) (2007) 285-294.
[15] P.S.B. Zdanski, M. Vaz Jr, Three-dimensional polymer melt flow in sudden expansions: Non-isothermal flow topology, Int. J. Heat Mass Transf., 52(15) (2009) 3585- 3594.
[16] P.S.B. Zdanski, M. Vaz Jr, Non-isothermal polymer melt flow in sudden expansions, J. Non-Newton. Fluid Mech., 161(1) (2009) 42-47.
[17] A. Shahbani-Zahiri, M.M. Shahmardan, H. Hassanzadeh, M. Norouzi, Investigation of inertial force effects on the heat transfer of viscoelastic fluid flow inside expanded planar channel with the symmetric abrupt expansion, Modares Mech. Eng., 17(6) (2017) 139-148. (in Persian) [18] R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of polymeric liquids. Vol 1: Fluid mechanics, Wiley, 1987.
[19] N. Phan-Thien, R.I. Tanner, A new constitutive equation derived from network theory, J. Non-Newton. Fluid Mech., 2(4) (1977) 353-365.
[20] N. Phan-Thien, A nonlinear network viscoelastic model, J. Rheol., 22(3) (1978) 259-283.
[21] R.B. Bird, J.M. Wiest, Constitutive equations for polymeric liquids, Annu. Rev. Fluid. Mech., 27(1) (1995) 169-193.
[22] D.O.A. Cruz, F.T. Pinho, Fully-developed pipe and planar flows of multimode viscoelastic fluids, J. Non- Newton. Fluid Mech., 141(2) (2007) 85-98.
[23] R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of polymeric liquids: Fluid mechanics, Second ed., New York: John Wiley and Sons Inc., 1987.
[24] J.E. Mark, Physical properties of polymers handbook, American Institute of Physics, New York, 1996.
[25] P.J. Oliveira, F.T.d. Pinho, G.A. Pinto, Numerical simulation of non-linear elastic flows with a general collocated finite-volume method, J. Non-Newton. Fluid Mech., 79(1) (1998) 1-43.
[26] J.L. Favero, A.R. Secchi, N.S.M. Cardozo, H. Jasak, Viscoelastic flow analysis using the software OpenFOAM and differential constitutive equations, J. Non-Newton. Fluid Mech., 165(23) (2010) 1625-1636.
[27] S.V. Patankar, D.B. Spalding, A calculation procedure for heat, mass and momentum transfer in threedimensional parabolic flows, Int. J. Heat Mass Transf., 15(10) (1972) 1787-1806.
[28] M.A. Ajiz, A. Jennings, A robust incomplete Choleskiconjugate gradient algorithm, Int. J. Numer. Methods Eng., 20(5) (1984) 949-966.
[29] J. Lee, S. Yoon, Y. Kwon, S. Kim, Practical comparison of differential viscoelastic constitutive equations in finite element analysis of planar 4: 1 contraction flow, Rheologica Acta, 44(2) (2004) 188-197.
[30] P.M. Coelho, F.T. Pinho, P.J. Oliveira, Fully developed forced convection of the Phan-Thien–Tanner fluid in ducts with a constant wall temperature, Int. J. Heat Mass Transf., 45(7) (2002) 1413-1423.