مطالعه‌ی عددی اثرات اعداد برینکمن بر انتقال حرارت جریان سیال ویسکوالاستیک در کانال با انبساط ناگهانی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه بیرجند، بیرجند، ایران

2 دانشکده مهندسی مکانیک، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

در این مقاله، جریان اینرسی و غیر همدمای سیال ویسکوالاستیک در کانال صفحه‌ای متقارن با انبساط ناگهانی 3:1 برای محدوده اعداد برینکمن 0/01≥Br≥20 بررسی شده است. برای مدل سازی رفتار سیال ویسکوالاستیک، از مدل رئولوژیکی و غیرخطی فن تین-تنر استفاده شده است. از روش حجم محدود برای گسسته سازی معادلات حاکم و از الگوریتم پیزو برای حل همزمان این معادلات استفاده شده است. جریان سیال غیر قابل تراکم و دارای خواص متغیر بوده و جملۀ اتلافات ناشی از لزجت در معادلۀ انرژی در نظر گرفته شده است. در این مقاله، تأثیر اتلافات ناشی از لزجت توسط عدد برینکمن برای انتقال حرارت جریان سیال ویسکوالاستیک عبوری از کانال بررسی شده است. بدین منظور، خطوط جریان، خطوط همدما، منحنی سرعت، توزیع دما و اعداد ناسلت محلی در مقاطع عرضی مختلف، روی خط مرکزی و در مجاورت دیواره‌های بخش انبساط یافته کانال ترسیم و بررسی شده است. نتایج این تحقیق نشان می‌دهد که برای ناحیه در حال توسعه هیدرودینامیکی و حرارتی، بیشترین اعداد ناسلت محلی مربوط به دیواره‌های پایینی و بالایی بخش انبساط یافته کانال به ترتیب در انتهای گردابه اول و گردابه دوم واقع می‌شوند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Study of Brinkman Number Effects on Heated Viscoelastic Fluid Flow in Channel with Sudden Expansion

نویسندگان [English]

  • A. Shahbani Zahiri 1
  • M. Shahmardan 2
  • H. Hasanzadeh 1
  • M. Norouzi 2
1 Department of Mechanical Engineering, University of Birjand, Birjand, Iran
2 Department of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran
چکیده [English]

In this paper, the inertial and non-isothermal flow of viscoelastic fluid inside thesymmetric planar sudden expansion channel with an expansion ratio of 1:3 has been numericallyinvestigated in the range of Brinkman numbers (0.01≤Br≤20). The rheological and nonlinear model ofPhan Thien-Tanner (PTT) is used for modeling viscoelastic fluid behavior. The finite volume method(FVM) is employed to discretize the governing equations and the PISO algorithm is used to solve theseequations simultaneously. Due to the significant effect of temperature changes on the viscoelastic fluidproperties, these properties are considered as temperature-dependent and the viscous dissipations termis considered in the energy equation. The main purpose of this study is to investigate the effects ofBrinkman numbers on the heat generation by viscous dissipations term used in the energy equation.Therefore, the streamlines, the length of vortices, the isothermal lines, the distributions of velocity andtemperature and local Nusselt numbers have been examined in the channel expanded part. The resultsshow that for the hydrodynamic and thermally developing zone, the maximum value of the local Nusseltnumbers on the walls of the channel expanded part is located at the end of the first and second vortices.

کلیدواژه‌ها [English]

  • Viscoelastic fluid
  • Brinkman number
  • Viscose dissipations
  • Local Nusselt numbers
  • Expanded part
[1] M.S. Darwish, J.R. Whiteman, M.J. Bevis, Numerical modelling of viscoelastic liquids using a finite-volume method, J. Non-Newton. Fluid Mech., 45(3) (1992) 311- 337.
[2] K.A. Missirlis, D. Assimacopoulos, E. Mitsoulis, A finite volume approach in the simulation of viscoelastic expansion flows, J. Non-Newton. Fluid Mech., 78(2) (1998) 91-118.
[3] M. Norouzi, M.M. Shahmardan, A. Shahbani Zahiri, Bifurcation phenomenon of inertial viscoelastic flow through gradual expansions, Rheologica Acta, 54(5) (2015) 423-435.
[4] M.M. Shahmardan, M. Norouzi, H. Hassanzadeh, A. Shahbani Zahiri, The influence of elastic property and inertial force on the length of vortices in viscoelastic fluid flow inside planar channel with the gradual expansion, Modares Mech. Eng., 15(4) (2015) 281-291. (in Persian)
[5] M. Norouzi, A. Shahbani Zahiri, M.M. Shahmardan, H. Hassanzadeh, M. Davoodi, Investigation of stresses and normal stress differences behavior on symmetric and asymmetric polymeric fluid flow through planar gradual expansions, Meccanica, 52(8) (2017) 1889-1909.
[6] M. Norouzi, A. Shahbani Zahiri, M.M. Shahmardan, H. Hassanzadeh, Z. Talebi, A numerical study on pressure losses in asymmetric viscoelastic flow through symmetric planar gradual expansions, Eur. J. Mech. B Fluids, 65 (2017) 199-212.
[7] F.T. Pinho, P.J. Oliveira, Analysis of forced convection in pipes and channels with the simplified Phan-Thien– Tanner fluid, Int. J. Heat Mass Transf., 43(13) (2000) 2273-2287.
[8] J.M. Nóbrega, F.T.d. Pinho, P.J. Oliveira, O.S. Carneiro, Accounting for temperature-dependent properties in viscoelastic duct flows, Int. J. Heat Mass Transf., 47(6) (2004) 1141-1158.
[9] M. Norouzi, M.H. Kayhani, M.R.H. Nobari, Mixed and forced convection of viscoelastic materials in straight duct with rectangular cross section, World Appl. Sci. J., 7(3) (2009) 285-296.
[10] A. Jalali, M.A. Hulsen, M. Norouzi, M.H. Kayhani, Numerical simulation of 3D viscoelastic developing flow and heat transfer in a rectangular duct with a nonlinear constitutive equation, Korea-Australia Rheol. J., 25(2) (2013) 95-105.
[11] M. Norouzi, Analytical solution for the convection o Phan-Thien-Tanner fluids in isothermal pipes, Int. J. Therm. Sci., 108 (2016) 165-173.
[12] A. Montahaee, M.M. Shahmardan, M. Norouzi, The numerical simulation of flow and heat transfer of temperature dependent properties of viscoelastic fluid in an axisymmetric sudden expansion, Modares Mech. Eng., 16(12) (2016) 39-49. (in Persian)
[13] M.F. Letelier, C.B. Hinojosa, D.A. Siginer, Analytical solution of the Graetz problem for non-linear viscoelastic fluids in tubes of arbitrary cross-section, Int. J. Therm. Sci., 111 (2017) 369-378.
[14] M. Vaz Jr, P.S.B. Zdanski, A fully implicit finite difference scheme for velocity and temperature coupled solutions of polymer melt flow, Commun. Numer. Methods Eng., 23(4) (2007) 285-294.
[15] P.S.B. Zdanski, M. Vaz Jr, Three-dimensional polymer melt flow in sudden expansions: Non-isothermal flow topology, Int. J. Heat Mass Transf., 52(15) (2009) 3585- 3594.
[16] P.S.B. Zdanski, M. Vaz Jr, Non-isothermal polymer melt flow in sudden expansions, J. Non-Newton. Fluid Mech., 161(1) (2009) 42-47.
[17] A. Shahbani-Zahiri, M.M. Shahmardan, H. Hassanzadeh, M. Norouzi, Investigation of inertial force effects on the heat transfer of viscoelastic fluid flow inside expanded planar channel with the symmetric abrupt expansion, Modares Mech. Eng., 17(6) (2017) 139-148. (in Persian) [18] R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of polymeric liquids. Vol 1: Fluid mechanics, Wiley, 1987.
[19] N. Phan-Thien, R.I. Tanner, A new constitutive equation derived from network theory, J. Non-Newton. Fluid Mech., 2(4) (1977) 353-365.
[20] N. Phan-Thien, A nonlinear network viscoelastic model, J. Rheol., 22(3) (1978) 259-283.
[21] R.B. Bird, J.M. Wiest, Constitutive equations for polymeric liquids, Annu. Rev. Fluid. Mech., 27(1) (1995) 169-193.
[22] D.O.A. Cruz, F.T. Pinho, Fully-developed pipe and planar flows of multimode viscoelastic fluids, J. Non- Newton. Fluid Mech., 141(2) (2007) 85-98.
[23] R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of polymeric liquids: Fluid mechanics, Second ed., New York: John Wiley and Sons Inc., 1987.
[24] J.E. Mark, Physical properties of polymers handbook, American Institute of Physics, New York, 1996.
[25] P.J. Oliveira, F.T.d. Pinho, G.A. Pinto, Numerical simulation of non-linear elastic flows with a general collocated finite-volume method, J. Non-Newton. Fluid Mech., 79(1) (1998) 1-43.
[26] J.L. Favero, A.R. Secchi, N.S.M. Cardozo, H. Jasak, Viscoelastic flow analysis using the software OpenFOAM and differential constitutive equations, J. Non-Newton. Fluid Mech., 165(23) (2010) 1625-1636.
[27] S.V. Patankar, D.B. Spalding, A calculation procedure for heat, mass and momentum transfer in threedimensional parabolic flows, Int. J. Heat Mass Transf., 15(10) (1972) 1787-1806.
[28] M.A. Ajiz, A. Jennings, A robust incomplete Choleskiconjugate gradient algorithm, Int. J. Numer. Methods Eng., 20(5) (1984) 949-966.
[29] J. Lee, S. Yoon, Y. Kwon, S. Kim, Practical comparison of differential viscoelastic constitutive equations in finite element analysis of planar 4: 1 contraction flow, Rheologica Acta, 44(2) (2004) 188-197.
[30] P.M. Coelho, F.T. Pinho, P.J. Oliveira, Fully developed forced convection of the Phan-Thien–Tanner fluid in ducts with a constant wall temperature, Int. J. Heat Mass Transf., 45(7) (2002) 1413-1423.