[1] F. Chiara, M. Canova, A review of energy consumption, management, and recovery in automotive systems, with considerations of future trends, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 227(6) (2013) 914-936.
[2] T.B. Abbott, Magnesium: industrial and research developments over the last 15 years, Corrosion, 71(2) (2014) 120-127.
[3] J. Beddoes, M. Bibby, Principles of metal manufacturing processes, Butterworth-Heinemann, 1999.
[4] T. Naka, G. Torikai, R. Hino, F. Yoshida, The effects of temperature and forming speed on the forming limit diagram for type 5083 aluminum–magnesium alloy sheet, Journal of Materials Processing Technology, 113(1) (2001) 648-653.
[5] H. Wang, Y. Luo, P. Friedman, M. Chen, L. Gao, Warm forming behavior of high strength aluminum alloy AA 7075, Transactions of the Nonferrous Metals Society of China, 22(1) (2012) 1-7.
[6] Q.-F. Chang, D.-Y. Li, Y.-H. Peng, X.-Q. Zeng, Experimental and numerical study of warm deep drawing of AZ31 magnesium alloy sheet, International Journal of Machine Tools and Manufacture, 47(3) (2007) 436-443.
[7] H.S. Kim, A combined FEA and design of experiments approach for the design and analysis of warm forming of aluminum sheet alloys, The International Journal of Advanced Manufacturing Technology, 51(1-4) (2010) 1-14.
[8] T. Naka, F. Yoshida, Deep drawability of type 5083 aluminium–magnesium alloy sheet under various conditions of temperature and forming speed, Journal of Materials Processing Technology, 89 (1999) 19-23.
[9] J. Xu, Y. Zhou, J. Cui, G. Sun, G. Li, Experimental study for rubber pad forming process of AZ31 magnesium
alloy sheets at warm temperature, The International Journal of Advanced Manufacturing Technology, 89(1) (2017) 1079-1087.
[10] S. Thiruvarudchelvan, F. Travis, Hydraulic-pressureenhanced cup-drawing processes—an appraisal, Journal of Materials Processing Technology, 140(1) (2003) 70-75.
[11] S.-H. Zhang, M.R. Jensen, K.B. Nielsen, J. Danckert, L. Lang, D. Kang, Effect of anisotropy and prebulging on hydromechanical deep drawing of mild steel cups, Journal of Materials Processing Technology, 142(2) (2003) 544-550.
[12] D.-C. Kang, L.-H. Lang, S.-H. Zhang, Z.-R. Wang, S.- J. Yuan, Hydrodynamic deep drawing process, Harbin Gongye Daxue Xuebao(Journal of Harbin Institute of Technology)(China), 32(5) (2000) 42-44.
[13] L. Lang, J. Danckert, K.B. Nielsen, Investigation into hydrodynamic deep drawing assisted by radial pressure: Part I. Experimental observations of the forming process of aluminum alloy, Journal of Materials Processing Technology, 148(1) (2004) 119-131.
[14] H. Choi, M. Koç, J. Ni, A study on warm hydroforming of Al and Mg sheet materials: mechanism and proper temperature conditions, Ann Arbor, 1001 (2008) 48109- 42136.
[15] P. Groche, R. Huber, J. Doerr, D. Schmoeckel, Hydromechanical deep-drawing of aluminium-alloys at elevated temperatures, CIRP Annals-Manufacturing Technology, 51(1) (2002) 215-218.
[16] E. Khosrojerdi, M. Bakhshi-Jooybari, A. Gorji, S.J. Hosseinipour, Experimental and numerical analysis of hydrodynamic deep drawing assisted by radial pressure at elevated temperatures, The International Journal of Advanced Manufacturing Technology, (2016) 1-11.
[17] T. Naka, R. Hino, F. Yoshida, Deep drawability of 5083 Al- Mg alloy sheet at elevated temperature and its prediction, Key Engineering Materials, 177 (2000) 485-490.
[18] S. Mahabunphachai, M. Koç, Investigations on forming of aluminum 5052 and 6061 sheet alloys at warm temperatures, Materials & Design, 31(5) (2010) 2422-2434.
[19] N. Abedrabbo, F. Pourboghrat, J. Carsley, Forming
of aluminum alloys at elevated temperatures–Part 2: Numerical modeling and experimental verification, International journal of plasticity, 22(2) (2006) 342-373.
[20] H.S. Kim, M. Koc, J. Ni, A. Ghosh, Finite element modeling and analysis of warm forming of aluminum alloys: Validation through comparisons with experiments and determination of a failure criterion, Journal of manufacturing science and engineering, 128(3) (2006) 613-621.