روش پیش‌شرط توانی در تسریع نرخ همگرایی جریان‌های تراکم‌ناپذیر پایا و ناپایای آشفته

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه صنعتی شاهرود، شاهرود ، ایران

چکیده

در تحقیق حاضر، برای نخستین بار از روش پیش شرط سازی توانی محلی، جهت شبیه سازی جریان‌های تراکم ناپذیر آشفته پایا و ناپایا در اطراف ایرفویل‌ها در اعداد رینولدز بالا استفاده شده است. در این روش، معادلات حاکم با تغییر در جملات مشتق زمانی اصلاح می‌گردند. معادلات حاکم به‌کمک روش عددی حجم محدود جیمسون گسسته سازی می‌شوند. همچنین برای حل جریان ناپایا از الگوریتم ضمنی دوزمانه و برای شبیه سازی عددی جریان آشفته از مدل جبری بالدوین و لومکس استفاده شده است. محاسبات برای جریان پایا و ناپایای آشفته عبوری از ایرفویل‌های NACA0012 و ONERA-A در اعداد رینولدز و زوایای حمله مختلف ارائه شده است. نتایج ارائه شده در این مطالعه شامل منحنی‌های سرعت، فشار و لزجت گردابه‌ای، توزیع ضریب فشار، ضرایب برآ و پسا و تأثیر روش پیش شرط توانی بر نرخ همگرایی می‌باشد. حل عددی ارائه شده و استفاده از روش پیش شرط توانی در هر دو جریان آشفته پایا و ناپایا در اعداد رینولدز بالا از دقت قابل قبولی برخوردار می‌باشد. همچنین استفاده از این روش سرعت همگرایی را تا حد زیادی افزایش داده به طوری که تعداد تکرار گام حل عددی و به تبع آن زمان واحد پردازش مرکزی در هر دو جریان پایا و ناپایا را به شکل قابل توجهی کاهش می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Power-law Preconditioning Approach for Accelerating the Convergence Rate of Steady and Unsteady Incompressible Turbulent Flows

نویسندگان [English]

  • P. Akbarzadeh
  • S.M. Derazgisoo
  • M.A. Shahnazi
  • A. Askari Lahdarboni
Department of Mechanical and Mechatronics Engineering, Shahrood University of Technology, Shahrood, Iran
چکیده [English]

In the present study, for the first time, the locally power-law preconditioning method for analyzing steady and unsteady incompressible turbulent flows around airfoils in high Reynolds numbers is utilized. In this method, the governing equations are modified by altering the time derivatives terms. The governing equations are discretized by the numerical method derived from the cell-centered Jameson’s finite volume algorithm. In addition, for solving the unsteady flows, an implicit dual-time procedure and for simulating the turbulent flows, Baldwin and Lomax algebraic model have been employed. The computations are presented for steady and unsteady turbulent flows around NACA0012 and ONERA-A airfoils at various angles of attack and Reynolds number. Results presented in the paper focus on the velocity, pressure and eddy viscosity profiles, distribution of pressure coefficient, lift and drag coefficients and the effect of the power-law preconditioning method on the convergence rate. The numerical solution indicates an acceptable accuracy with the aid of the power-law preconditioning method in both steady and unsteady turbulent flows for high Reynolds numbers. Moreover, using the power-law preconditioning method improves the convergence speed significantly and reduces the iteration number of solution steps and central processing unit time simultaneously in both steady and unsteady flows.

کلیدواژه‌ها [English]

  • Turbulent flows
  • Baldwin and Lomax algebraic model
  • Power-law preconditioning method
  • Implicit dual-time algorithm
  • Convergence speed
[1] J. Blazek, Chapter 6 - Computational fluid dynamics: principles and applications, Butterworth-Heinemann, (2015) 167-211.
[2] A.J. Chorin, A numerical method for solving incompressible viscous flow problems, Journal of computational physics, 135(2) (1997) 118-125.
[3] E. Turkel, Preconditioned methods for solving the incompressible and low speed compressible equations, Journal of computational physics, 72(2) (1987) 277-298.
[4] A. Jameson, Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings, AIAA paper, 1596 (1991) 1991.
[5] B. Van Leer, W.T. Lee, P.L. Roe, Characteristic timestepping or local preconditioning of the Euler equations, 10th Computational Fluid Dynamics Conference, U.S.A., )24-26 June 1991( 260-282.
[6] D. Lee, Local preconditioning of the Euler and Navier - Stokes equations, University of Michigan, Michigan, U.S.A, Doctoral dissertation, (1996).
[7] A. Malan, R. Lewis, P. Nithiarasu, An improved unsteady, unstructured, artificial compressibility, finite volume scheme for viscous incompressible flows: Part I. Theory and implementation, International Journal for Numerical Methods in Engineering, 54(5) (2002) 695-714.
[8] A. Malan, R. Lewis, P. Nithiarasu, An improved unsteady, unstructured, artificial compressibility, finite volume scheme for viscous incompressible flows: Part II. Application, International Journal for Numerical Methods in Engineering, 54(5) (2002) 715-729.
[9] V. Esfahanian, P. Akbarzadeh, The Jameson’s numerical method for solving the incompressible viscous and inviscid flows by means of artificial compressibility and preconditioning method, Applied Mathematics and Computation, 206(2) (2008) 651-661.
[10] V. Esfahanian, P. Akbarzadeh, K. Hejranfar, An improved progressive preconditioning method for steady non‑cavitating and sheet‑cavitating flows, International Journal for Numerical Methods in Fluids, 68(2) (2012) 210-232.
[11] P. Akbarzadeh, I. Mirzaee, M.H. Kayhani, E. Akbarzadeh, Blowing and suction effect on drag and lift coefficients for viscous incompressible flows over hydrofoils by power-law preconditioning method, Modares Mechanical Engineering, 14(4) (2014) 129- 140. (in Persian)
[12] P. Akbarzadeh, E. Akbarzadeh, Numerical investigation of blowing effect on hydrodynamic behavior of cavitating flows over hydrofoils using power law preconditioning method, Modares Mechanical Engineering, 14(8) (2014) 59-67. (in Persian)
[13] S.M. Derazgisoo, P. Akbarzadeh, A dual-time implicit power-law preconditioning method for solving unsteady incompressible flows, Modares Mechanical Engineering, 16(2) (2016) 99-110. (in Persian)
[14] L. Prandtl, Turbulent flow, National Advisory Committee for Aeronautics, Technical Memorandum, 435 (1927).
[15] A. Smith, T. Cebeci, Numerical Solution of the Turbulent-boundary-layer Equations, Douglas Aircraft Co Long Beach Ca Aircraft DIV, (No. DAC-33735) 1967.
[16] B.S. Baldwin, H. Lomax, Thin layer approximation and algebraic model for separated turbulent flows, 16th Aerospace Sciences Meeting, U.S.A., (16-18 January 1978) 1-8.
[17] E. Guilmineau, J. Piquet, and P. Queutey, On the use of turbulence models for the simulation of incompressible viscous flow past airfoils at high-lift static and dynamic incidence, Fifteenth International Conference on Numerical Methods in Fluid Dynamics, Berlin, Germany, (24–28 June 1997) 540-545.
[18] S.-H. Lee, Cancellation problem of preconditioning method at low Mach numbers, Journal of Computational Physics, 225(2) (2007) 1199-1210.
[19] A. Jameson, Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings, AIAA paper, 1596 (1991) 1991.
[20] A. Belov, L. Martinelli, A. Jameson, A new implicit algorithm with multigrid for unsteady incompressible flow calculations, 33rd Aerospace Sciences Meeting and Exhibit, U.S.A., (9-12 January 1995), 1-19.
[21] N. Gregory, C. O'reilly, Low-Speed aerodynamic characteristics of NACA 0012 aerofoil section, including the effects of upper-surface roughness simulating hoar frost, Aeronautical Research Council Reports and Memorandum, 3726 (1973).
[22] C. Baxevanou, D. Fidaros, Validation of numerical schemes and turbulence models combinations for transient flow around airfoil, Engineering Applications of Computational Fluid Mechanics, 2(2) (2008) 208-221.
[23] R.E. Sheldahl, P.C. Klimas, Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines, Sandia National Labs., Albuquerque, No. SAND-80-2114 (1981).
[24] S. Rodolfo Idelsohn, N. Marcelo Nigro, J. Marcelo Gimenez, R. Rossi, J. Marcelo Marti, A fast and accurate method to solve the incompressible Navier-Stokes equations, Engineering Computations, 30(2) (2013) 197-222.
[25] G. Jin, M. Braza, Two-equation turbulence model for unsteady separated flows around airfoils, AIAA journal, 32(11) (1994) 2316-2320.