کنترل غیرفعال ارتعاشات لوله‌های حامل سیال با استفاده از جاذب ارتعاشی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران

چکیده

در مقاله حاضر تأثیر جاذب ارتعاشی یک درجه آزادی بر کاهش دامنه ارتعاشات لوله‌های حامل سیال با روش نیمه تحلیلی مطالعه شده است. معادلات حرکت لوله و جاذب ارتعاشی با استفاده از تئوری تیر اویلر- برنولی استخراج شده است. با در نظر گرفتن چهار شکل مود ارتعاشی اول لوله، معادلات حرکت با استفاده از روش گالرکین گسسته‌سازی و به صورت عددی حل شده‌اند. سپس، رابطه تحلیلی برای محاسبه فرکانس‌های طبیعی لوله حامل سیال با تکیه‌گاه‌های ساده در دو انتها و تعیین مشخصه‌های جاذب ارتعاشی ارائه شده است که با دقت بسیار مناسبی می‌توان از این رابطه به منظور طراحی جاذب ارتعاشی استفاده کرد. پس از صحه‌گذاری بر نتایج روش ارائه شده، تأثیر پارامترهای مختلف بر کاهش دامنه نوسانات سیستم با استفاده از منحنی‌های مناسبی بررسی شده است. نتایج نشان می‌دهد که با افزایش سرعت سیال دامنه نوسانات سیستم افزایش می‌یابد که با استفاده از جاذب ارتعاشی بهینه می‌توان دامنه را تا حدود 80 درصد کاهش داد. بر این اساس استفاده از این نوع جاذب با توجه به سادگی نصب و استفاده و همچنین قابلیت جذب انرژی بالا می‌تواند راهکار مناسبی جهت کاهش و یا حذف ارتعاشات ناخواسته ناشی از سیال در لوله‌های حامل سیال باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Passive Vibration Control of the Fluid Conveying Pipes using Dynamic Vibration Absorber

نویسندگان [English]

  • mousa rezaee
  • vahid Arab maleki
Department of Mechanical Engineering/ University of Tabriz
چکیده [English]

In this paper, by using a semi analytical method the effect of dynamic vibration absorber on amplitude reduction of fluid conveying pipe is investigated. Considering the Euler-Bernoulli beam theory, the governing equations of motion are derived. By using the first four vibration modes of the fluid conveying pipe, the Galerkin method is applied to discretize the equations, and then the discretized equations are solved numerically. Moreover, simple approximate analytical expressions are proposed for prediction of the natural frequencies of the simply supported fluid conveying pipe and the dynamic vibration absorber parameters. After validating the results of the proposed method, some proper curves are plotted to characterize the effects of system parameters on reduction of pipe vibration amplitude. The results indicate that around the first critical fluid velocity, by using an appropriate vibration absorber, the vibration amplitude can be reduced by 80%. Therefore, this type of absorber due to its simplicity of installation and high energy absorption capacity, can be considered as a benefit method to reduce/eliminate unwanted vibrations of the fluid conveying pipes.

کلیدواژه‌ها [English]

  • Fluid conveying pipe
  • Vibration absorber
  • Amplitude reduction
  • Galerkin method
[1] K.R. Chellapilla, S. Sutar, R. Madabhushi, Effect of Weld Tension on Flexural Frequencies of Guided-Simply Supported Fluid-Conveying Pipes, Int. J. Mech. Eng. Autom, 3(8) (2016) 319-324.
[2] M.L. De Bellis, G.C. Ruta, I. Elishakoff, A contribution to the stability of an overhanging pipe conveying fluid, Continuum Mechanics and Thermodynamics, 27(4-5) (2015) 685-701.
[3] J. Rivero-Rodriguez, M. Pérez-Saborid, Numerical investigation of the influence of gravity on flutter of cantilevered pipes conveying fluid, Journal of Fluids and Structures, 55 (2015) 106-121.
[4] C. Gan, S. Jing, S. Yang, H. Lei, Effects of supported angle on stability and dynamical bifurcations of cantilevered pipe conveying fluid, Applied Mathematics and Mechanics, 36(6) (2015) 729-746.
[5] J. Huang, G. Chen, L. Shu, Y. Chen, Y. Zhang, Impact of fouling on flow-induced vibration characteristics in fluid-conveying pipelines, IEEE Access, 4 (2016) 6631-6644.
[6] E. Kjolsing, M. Todd, The impact of boundary conditions and fluid velocity on damping for a fluid conveying pipe in a viscous fluid, in:  SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, 2016, pp. 979922-979922-979911.
[7] G. Eslami, V.A. Maleki, M. Rezaee, Effect of Open Crack on Vibration Behavior of a Fluid-Conveying Pipe Embedded in a Visco-Elastic Medium, Latin American Journal of Solids and Structures, 13(1) (2016) 136-154.
[8] H.-I. Yoon, I.-S. Son, Dynamic behavior of cracked simply supported pipe conveying fluid with moving mass, Journal of sound and vibration, 292(3) (2006) 941-953.
[9] D. Zhao, J. Liu, C. Wu, Stability and local bifurcation of parameter-excited vibration of pipes conveying pulsating fluid under thermal loading, Applied Mathematics and Mechanics, 36(8) (2015) 1017-1032.
[10] Z.-Y. Li, J.-J. Wang, M.-X. Qiu, Dynamic Characteristics of Fluid-Conveying Pipes with Piecewise Linear Support, International Journal of Structural Stability and Dynamics,  (2015) 1550025.
[11] C. An, J. Su, Dynamic behavior of pipes conveying gas–liquid two-phase flow, Nuclear Engineering and Design, 292 (2015) 204-212.
[12] B.D. Texier, S. Dorbolo, Deformations of an elastic pipe submitted to gravity and internal fluid flow, Journal of Fluids and Structures, 55 (2015) 364-371.
[13] Y. Luo, M. Tang, Q. Ni, Y. Wang, L. Wang, Nonlinear Vibration of A Loosely Supported Curved Pipe Conveying Pulsating Fluid under Principal Parametric Resonance, Acta Mechanica Solida Sinica, 29(5) (2016) 468-478.
[14] B. Sınır, D.D. Demi̇r, The analysis of nonlinear vibrations of a pipe conveying an ideal fluid, European Journal of Mechanics-B/Fluids, 52 (2015) 38-44.
[15] T. Zhang, H. Ouyang, Y. Zhang, B. Lv, Nonlinear dynamics of straight fluid-conveying pipes with general boundary conditions and additional springs and masses, Applied Mathematical Modelling,  (2016).
[16] K.M. Shum, Tuned vibration absorbers with nonlinear viscous damping for damped structures under random load, Journal of Sound and Vibration, 346 (2015) 70-80.
[17] F.S. Samani, F. Pellicano, Vibration reduction of beams under successive traveling loads by means of linear and nonlinear dynamic absorbers, Journal of Sound and Vibration, 331(10) (2012) 2272-2290.
[18] F.S. Samani, F. Pellicano, A. Masoumi, Performances of dynamic vibration absorbers for beams subjected to moving loads, Nonlinear Dynamics, 73(1-2) (2013) 1065-1079.
[19] M. Paıdoussis, G. Li, Pipes conveying fluid: a model dynamical problem, Journal of Fluids and Structures, 7(2) (1993) 137-204.
[20] C.-H. Yau, A. Bajaj, O. Nwokah, Active control of chaotic vibration in a constrained flexible pipe conveying fluid, Journal of fluids and structures, 9(1) (1995) 99-122.
[21] H. Doki, K. Hiramoto, R. Skelton, Active control of cantilevered pipes conveying fluid with constraints on input energy, Journal of fluids and structures, 12(5) (1998) 615-628.
[22] R.D. Bao, Study on Adaptive Control of Restrained Cantilever Pipe Conveying Fluid, in:  Applied Mechanics and Materials, Trans Tech Publ, 2012, pp. 1325-1335.
[23] M.H. Demir, A. Yesildirek, F. Yigit, Control of a cantilever pipe conveying fluid using neural network, in:  Modeling, Simulation, and Applied Optimization (ICMSAO), 2015 6th International Conference on, IEEE, 2015, pp. 1-6.
[24] G.H. Koo, Y.S. Park, VIBRATION REDUCTION BY USING PERIODIC SUPPORTS IN A PIPING SYSTEM, Journal of Sound and Vibration, 210(1) (1998) 53-68.
[25] D. Yu, J. Wen, H. Zhao, Y. Liu, X. Wen, Vibration reduction by using the idea of phononic crystals in a pipe-conveying fluid, Journal of Sound and Vibration, 318(1–2) (2008) 193-205.
[26] S. Rinaldi, M.P. Païdoussis, Dynamics of a cantilevered pipe discharging fluid, fitted with a stabilizing end-piece, Journal of Fluids and Structures, 26(3) (2010) 517-525.
[27] R.E. Rossi, P.A.A. Laura, D.R. Avalos, H. Larrondo, Free Vibrations of Timoshenko Beams Carrying Elastically Mounted, Concentrated Masses, Journal of Sound and Vibration, 165(2) (1993) 209-223.