حل عددی انتقال حرارت نانوسیالات در میکروکانال موجی‌شکل به روش پخش

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده فنی و مهندسی، دانشگاه رازی، کرمانشاه، ایران

2 دانشکده مهندسی مکانیک، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

در این مقاله انتقال حرارت مزدوج نانوسیالات در میکروکانال­ های موجی­شکل با استفاده از مدل تکفازی به روش پخش و مدل دوفازی به روش اویلری-لاگرانژی بصورت عددی مطالعه شده است. سیال پایه آب و نانوذرات از دو جنس مختلف اکسید آلومینیوم و مس می­ باشند. غلظت حجمی نانوذرات تا 2% و قطر آنها از 100 تا 150 نانومتر تغئیر می­کند. معادلات سه ­بعدی حاکم شامل پیوستگی، ممنتوم و انرژی در سیال از دیدگاه اویلری و به روش حجم کنترل (سیمپل) حل شده ­اند. معادلات حاکم بر حرکت و انرژی ذرات نیز به روش لاگرانژی جداسازی و به روش رنگ-کوتای مرتبه 4 حل شده ­اند. از آنجا که در روش لاگرانژی معادلات حرکت در سه بعد و معادله انرژی برای تک تک ذرات حل می ­شود، از روش پردازش موازی و با استفاده از ابرکامپیوتر این معادلات حل شده ­اند. معادلات حاکم در روش پخش از تئوری محیط متخلخل استخراج شده ­اند. عدم توزیع یکنواخت ذرات در ناحیه حل باعث اختلاف نتایج روش تکفازی و دوفازی می­ شود. این اختلاف در روش پخش با انطباق نتایج حاصل از آن با نتایج دوفازی تاحد زیادی کاهش می­یابد. در پایان برای هر دونوع نانوسیال روابطی جهت محاسبه ضریب هدایت حرارتی ارائه شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Heat Transfer by Nanofluids in a wavy walls Microchannel using Dispersion Method

نویسندگان [English]

  • Javad Rostami 1
  • Abbas Abbassi 2
  • Majid Saffar-Avval 2
1 Department of Mechanical Engineering, Razi University
2 Department of mechanical engineering, Amirkabir University of Technology
چکیده [English]

In this paper, conjugate heat transfer in wavy microchannels filled with nanofluid is studied numerically. To simulate the nanofluids, dispersion and homogeneous methods in single-phase model and Eulerian-Lagrangian method in two-phase model are used. Homogeneous method underestimates the experimental results. Then, nanofluid simulated by two-phase model using an Eulerian-Lagrangian approach. Then its results are used to find the unknown parameter in the conduction relation of nanofluid in dispersion method. Nanofluids are water-Cu or water-Al2O3 suspensions with a particle diameter of 100-150nm and a volume fraction of up to 2%. The three-dimensional governing equations including continuity, Navier-Stokes and energy equations are solved by the well-known SIMPLE method. The governing equations for particles are solved by a 4th order Runge-Kutta algorithm. due to the 3-D governing equation four equations includinf velocity components and energy should be solved for all particles. The computer program has been written in parallel processing method (MPI). Then a super computer with several CPU,s should be used. Using dispersion method is as simple as homogeneous method but has accuracy as two-phase Eulerian-Lagrangian method.

کلیدواژه‌ها [English]

  • "Nanofluid"
  • "one phase model"
  • "dispersion method"
  • "two-phase model"
  • "Eulerian-Lagrangian"
1-Maiga, S., E., B., Nguyen, C., T., Galanis, N., Roy, G., Mare, T., Coqueux, M., 2006, “Heat Transfer Enhancement in Turbulent Tube Flow Using Al2O3 Nanoparticle Suspension”, International Journal of Numerical Method for Heat and Fluid Flow, 16 (3), pp. 275-292.
2-Patel, H., Sundararajan, T., Pradeep, T., Dasgupta, A., Dasgupta, N. and Das, S. K., 2005, “A Micro-convection Model for Thermal Conductivity of Nanofluids”, Journal of Physics, 65 (5), pp. 863-869.
3-Brinkman, H. C., 1952, “The Viscosity of Concentrated Suspension and Solution”, the Journal of Chemical Physics, 20, pp. 571-581.
4-Chon, C., Kihm, K., Lee, S., Choi, S., 2005, “Empirical correlation finding the role of temperature and particle size for nanofluid Al2O3 thermal conductivity enhancement”, Applied Physics Letter 87.
5-Corcione, M., 2011, “Empirical Correlating equations for predictiong the effective thermal conductivity and dynamic viscosity of nanofluids”, Energy Conversion and Management, 52, pp. 789-793.
6-Mirzaei, M., Saffar-Avval, M., Naderan, H., 2014, “Heat Transfer Investigation of Laminar Developing Flow of Nanofluids in a Microchannel Based on Eulerian-Lagrangian Approach”, The Canadian Journal of Chemical Engineering, 92, pp. 1139-1149.
7-Bianco, V., Chiacchio, F., Manca, O., Nardini, S., 2009, “Numerical Investigation of Nanofluids Forced Convection in Circular Tubes”, Applied Thermal Engineering, 29, pp. 3632-3642.
8-Wen, D., Zhang, L., He, Y., 2009, “Flow and Migration of Nanoparticle in a Single Channel”, Heat and Mass Transfer, 45, 1061-1067.
9-He, Y., Men, Y., Zhao, Y., Lu, H., Ding, Y., 2009, “Numerical Investigation into the Convective Heat Transfer of TiO2 Nanofluids Flowing through a Straight Tube Under the Laminar Flow Conditions”, Applied Thermal Engineering, 29, 1965-1972.
10-Rostami, J., and Abbassi, A., 2016, “Conjugate heat transfer in a wavy microchannel using nanofluid by two-phase Eulerian–Lagrangian method”, Advanced Powder Technology, 27, 9-18.
11- Heris, S. Z., Nasr Esfahani, M., Etemad, G., 2007, “Numerical Investigation of Nanofluid Laminar Convective Heat Transfer through a Circular Tube”, Numerical Hear Transfer, Part A, 52, pp. 1043-1058
12-Mokmeli, A., Saffar-Avval, M., 2010, “Prediction of Nanofluid Convective Heat Transfer Using the Dispersion Model”, International Journal of Thermal Sciences, 49, pp. 471-478.
13-Ranjbar, A. A., Kashani, S., Hosseinizadeh, S. F., 2011, “Numerical Heat Transfer Studies of a Latent Heat Storage System Containing Nano-Enhanced Phase Change Material”, Thermal Sciences, 15 (1), pp. 169-181.
14- Rahimi, M., Ranjbar, A. A., Hosseini, M. J., Abdollahzadeh, M., 2012, “Natural convection of nanoparticle–water mixture near its density inversion in a rectangular enclosure”, International Communications in Heat and Mass Transfer, 39, pp. 131-137.
15-Tolentino, F. O., Mendez, R. R., Guerrero, A. H. and Palomares, B. G., 2008, “Experimental Study of Fluid Flow in the Entrance of a Sinusoidal Channel”, International Journal of Heat and Fluid Flow, 29, 1233-1239.
16-Rostami, J., Abbassi, A., Saffar-Avval, M., 2015, “Optimization of Conjugate Heat Transfer in Wavy Walls Microchannels”, Applied Thermal Engineering, 82, 318-328.
17-Saffman, P. G., 1959, “A Theory of Dispersion in a Porous Medium”, Journal of Fluid Mechanics, 6, pp. 321-349.
18-Raisee, M., 1999, “Computation of Flow and Heat Transfer Through Two- and Three-Dimensional Rib-Roughed Passages, PhD Thesis, Department of Mechanical Engineering, University of Manchester (UMIST).
19-Patankar, S. V., and Spalding, D. B., 1972, “A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows”, International Journal of Heat and Mass Transfer, 15, pp. 1787-1806.
20-Spalding, D. B., 1972, “A Novel Finite Difference Formulation for Differential Expressions Involving Both First and Second Derivatives”, Journal of Numerical Methods for Engineering, 4, pp. 551-559.
21-Rhie, C. M., Chow, W. L., 1983, “Numerical Study of the Turbulent Flow Past an Airfoil with Trading Edge Separation”, AIAA Journal, 21 (11), 1525-1535.