[1].S. Du, H. Ang, Design and feasibility analyses of morphing airfoil used to control flight attitude, Strojniški vestnik-Journal of Mechanical Engineering, 58(1) (2012) 46-55.
[2].E. Dileep, M. Nebish, V. Loganathan, Aerodynamic performance optimization of smart wing using SMA actuator, Research Journal of Recent Sciences, 2(6) (2013) 17-22.
[3].S. Barbarino, W.G. Dettmer, M.I. Friswell, Morphing trailing edges with shape memory alloy rods, in: Proceeding of, 2010.
[4].G. Spirlet, Design of Morphing Leading and Trailing Edge Surfaces for Camber and Twist Control, (2015).
[5].S. Barbarino, O. Bilgen, R.M. Ajaj, M.I. Friswell, D.J. Inman, A review of morphing aircraft, Journal of intelligent material systems and structures, 22(9) (2011) 823-877.
[6].M.H. Djavareshkian, A. Esmaeli, A. Parsani, Aerodynamics of smart flap under ground effect, Aerospace Science and Technology, 15(8) (2011) 642- 652.
[7].W. Tay, K. Lim, Numerical analysis of active chordwise flexibility on the performance of non- symmetrical flapping airfoils, Journal of Fluids and Structures, 26(1) (2010) 74-91.
[8].W.W. Gilbert, Mission adaptive wing system for tactical aircraft, Journal of Aircraft, 18(7) (1981) 597- 602.
[9].J.-N. Pederzani, H. Haj-Hariri, Numerical analysis of heaving flexible airfoils in a viscous flow, AIAA journal, 44(11) (2006) 2773-2779.
[10]. J. Szodruch, R. Hilbig, Variable wing camber for transport aircraft, Progress in Aerospace Sciences, 25(3) (1988) 297-328.
[11]. J. Fincham, M. Friswell, Aerodynamic optimisation of a camber morphing aerofoil, Aerospace Science and technology, 43 (2015) 245-255.
[12]. T.A. Weisshaar, Morphing aircraft systems: historical perspectives and future challenges, Journalof Aircraft, 50(2) (2013) 337-353.
[13]. T.P. Combes, A.S. Malik, G. Bramesfeld, M.W. McQuilling, Efficient fluid-structure interaction method for conceptual design of flexible, fixed-wing micro-air-vehicle wings, AIAA Journal, 53(6) (2015) 1442-1454.
[14]. P. Chinnassamy, Y. Chen, Application of computational fluid dynamics on smart wing design, in: 43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005, pp. 637.
[15]. N. Pern, J. Jacob, Wake vortex mitigation using adaptive airfoils-The Piezoelectric Arc Airfoil, in: 37th Aerospace Sciences Meeting and Exhibit, 1999, pp. 524.
[16]. T. Noyon, W. Tay, B. Van Oudheusden, H. Bijl, Effect of chordwise deformation on unsteady aerodynamic mechanisms in hovering flapping flight, International Journal of Micro Air Vehicles, 6(4) (2014) 265-277.
[17]. P. Prempraneerach, F. Hover, M.S. Triantafyllou, The effect of chordwise flexibility on the thrust and efficiency of a flapping foil, Proceedings Unmanned, Untethered Submersible Technology, (2003).
[18]. C.-K. Kang, H. Aono, C.E. Cesnik, W. Shyy, Effects of flexibility on the aerodynamic performance of flapping wings, Journal of fluid mechanics, 689 (2011) 32-74.
[19]. F. Armero, Elastoplastic and viscoplastic deformations in solids and structures, Encyclopedia of Computational Mechanics Second Edition, (2018) 1-41.
[20]. A.F. Duran, R.C. Rovira, J.M. Molist, A numerical formulation to solve the ALE Navier- Stokes equations applied to the withdrawal of magma chambers, Universitat Politècnica de Catalunya, 2000. [21]. T. Ahmed, M.T. Amin, S.R. Islam, S. Ahmed, Computational study of flow around a NACA 0012 wing flapped at different flap angles with varying mach numbers, Global Journal of Research In Engineering, (2014).
[22]. J. BEAVA, R.S. MA, R. NORT, M.P. BURROWS, Measurements of Maximum Lift on z6 Aerofoil Sections at High Mach Number, Technical Report for the Year, 1 (1960) 325.
[23]. Y. Bazilevs, K. Takizawa, T.E. Tezduyar, Computational fluid-structure interaction: methods and applications, John Wiley & Sons, 2013.