[1] N. Zamel, X. Li, Effect of ntaminants on polymer electrolyte membrane fuel cells, Progress in Energy and Combustion Science, 37(3) (2011) 292-329.
[2] N. Zamel, X. Li, Transient analysis of carbon monoxide poisoning and oxygen bleeding in a PEM fuel cell anode catalyst layer, International Journal of Hydrogen Energy, 33(4) (2008) 1335-1344.
[3] J. Baschuk, X. Li, Carbon monoxide poisoning of proton exchange membrane fuel cells, International Journal of Energy Research, 25(8) (2001) 695-713.
[4] R.J. Bellows, E.P. Marucchi-Soos, D.T. Buckley, Analysis of reaction kinetics for carbon monoxide and carbon dioxide on polycrystalline platinum relative to fuel cell operation, Industrial & engineering chemistry research, 35(4) (1996) 1235-1242.
[5] J. Divisek, H.-F. Oetjen, V. Peinecke, V. Schmidt, U. Stimming, Components for PEM fuel cell systems using hydrogen and CO containing fuels, Electrochimica Acta, 43(24) (1998) 3811-3815.
[6] T. Springer, T. Rockward, T. Zawodzinski, S. Gottesfeld, Model for polymer electrolyte fuel cell operation on reformate feed: effects of CO, H; 2 dilution, and high fuel utilization, Journal of the Electrochemical Society, 148(1) (2001) A11-A23.
[7] T. Springer, T. Zawodzinski, S. Gottesfeld, Modeling of polymer electrolyte fuel cell performance with reformate fuel feed streams, Los Alamos National Lab., NM (United States), 1997.
[8] J. Baschuk, X. Li, Modelling CO poisoning and O2 bleeding in a PEM fuel cell anode, International Journal of Energy Research, 27(12) (2003) 1095-1116.
[9] T. Zhou, H. Liu, A 3D model for PEM fuel cells operated on reformate, Journal of Power Sources, 138(1) (2004) 101-110.
[10] H. Chu, C. Wang, W. Liao, W. Yan, Transient behavior of CO poisoning of the anode catalyst layer of a PEM fuel cell, Journal of Power Sources, 159(2) (2006) 1071-1077.
[11] C.-P. Wang, H.-S. Chu, Transient analysis of multicomponent transport with carbon monoxide poisoning effect of a PEM fuel cell, Journal of power sources, 159(2) (2006) 1025-1033.
[12] U. Stimming, H. Oetjen, V. Schmidt, F. Trila, Performance Data of a Proton Exchange Membrane Fuel Cell Using H2/CO as Fuel, J. Electrochem. Soc, 143(12) (1996) 3838-3842.
[13] M. Murthy, M. Esayian, A. Hobson, S. MacKenzie, W.-k. Lee, J. Van Zee, Performance of a polymer electrolyte membrane fuel cell exposed to transient CO concentrations, Journal of The Electrochemical Society, 148(10) (2001) A1141-A1147.
[14] Z. Qi, C. He, A. Kaufman, Effect of CO in the anode fuel on the performance of PEM fuel cell cathode, Journal of Power Sources, 111(2) (2002) 239-247.
[15] M. Murthy, M. Esayian, W.-k. Lee, J. Van Zee, The effect of temperature and pressure on the performance of a PEMFC exposed to transient CO concentrations, Journal of The Electrochemical Society, 150(1) (2003) A29-A34.
[16] K.K. Bhatia, C.-Y. Wang, Transient carbon monoxide poisoning of a polymer electrolyte fuel cell operating on diluted hydrogen feed, Electrochimica Acta, 49(14) (2004) 2333-2341.
[17] M. Hafttananian, A. Ramiar, A. Ranjbar, Novel techniques of oxygen bleeding for polymer electrolyte fuel cells under impure anode feeding and poisoning condition: A computational study using OpenFOAM®, Energy Conversion and Management, 122 (2016) 564-579.
[18] L.-Y. Sung, B.-J. Hwang, K.-L. Hsueh, F.-H. Tsau, Effects of anode air bleeding on the performance of CO-poisoned proton-exchange membrane fuel cells, Journal of Power Sources, 195(6) (2010) 1630-1639.
[19] P. Ribeirinha, M. Abdollahzadeh, J. Sousa, M. Boaventura, A. Mendes, Modelling of a high- temperature polymer electrolyte membrane fuel cell integrated with a methanol steam reformer cell, Applied Energy, 202 (2017) 6-19.
[20] M. Ishii, K. Mishima, Two-fluid model and hydrodynamic constitutive relations, Nuclear Engineering and design, 82(2-3) (1984) 107-126.
[21] X. Liu, G. Lou, Z. Wen, Three-dimensional two- phase flow model of proton exchange membrane fuel cell with parallel gas distributors, Journal of Power Sources, 195(9) (2010) 2764-2773.
[22] H. Meng, A two-phase non-isothermal mixed-domain PEM fuel cell model and its application to two- dimensional simulations, Journal of Power Sources, 168(1) (2007) 218-228.
[23] H. Meng, Multi-dimensional liquid water transport in the cathode of a PEM fuel cell with consideration of the micro-porous layer (MPL), international journal of hydrogen energy, 34(13) (2009) 5488-5497.
[24] T. Berning, D.M. Lu, N. Djilali, Three-dimensional computational analysis of transport phenomena in a PEM fuel cell, Journal of power sources, 106(1) (2002) 284-294.
[25] M.K. Baboli, M. Kermani, A two-dimensional, transient, compressible isothermal and two-phase model for the air-side electrode of PEM fuel cells, Electrochimica Acta, 53(26) (2008) 7644-7654.
[26] A. Ramiar, A. Mahmoudi, Q. Esmaili, M. Abdollahzadeh, Influence of cathode flow pulsation on performance of proton exchange membrane fuel cell with interdigitated gas distributors, Energy, 94 (2016) 206-217.
[27] H. Meng, Numerical investigation of transient responses of a PEM fuel cell using a two-phase non- isothermal mixed-domain model, Journal of Power Sources, 171(2) (2007) 738-746.
[28] N. Khajeh-Hosseini-Dalasm, K. Fushinobu, K. Okazaki, Three-dimensional transient two-phase study of the cathode side of a PEM fuel cell, international journal of hydrogen energy, 35(9) (2010) 4234-4246.
[29] U. Pasaogullari, C. Wang, Liquid water transport in gas diffusion layer of polymer electrolyte fuel cells, Journal of the Electrochemical Society, 151(3) (2004) A399-A406.
[30] X. Liu, W. Tao, Z. Li, Y. He, Three-dimensional transport model of PEM fuel cell with straight flow channels, Journal of power sources, 158(1) (2006) 25-35.
[31] C.-H. Min, A novel three-dimensional, two-phase and non-isothermal numerical model for proton exchange membrane fuel cell, Journal of Power Sources, 195(7) (2010) 1880-1887.
[32] E. Ticianelli, C. Derouin, A. Redondo, S. Srinivasan, Methods to advance technology of proton exchange membrane fuel cells, Journal of the Electrochemical Society, 135(9) (1988) 2209-2214.
[33] S. Lee, S. Mukerjee, E. Ticianelli, J. McBreen, Electrocatalysis of CO tolerance in hydrogen oxidation reaction in PEM fuel cells, Electrochimica Acta, 44(19) (1999) 3283-3293.