[1] P. Van Puyvelde, A. Vananroye, R. Cardinaels, P. Moldenaers, Review on morphology development of immiscible blends in confined shear flow, Polymer, 49(25) (2008) 5363-5372.
[2] C.L. Tucker Iii, P. Moldenaers, MICROSTRUCTURAL EVOLUTION IN POLYMER BLENDS, Annual Review of Fluid Mechanics, 34(1) (2002) 177-210.
[3] S.L. Ortiz, J.S. Lee, B. Figueroa-Espinoza, B. Mena, An experimental note on the deformation and breakup of viscoelastic droplets rising in non-Newtonian fluids, Rheologica Acta, 55(11) (2016) 879-887.
[4] M.R. Kennedy, C. Pozrikidis, R. Skalak, Motion and deformation of liquid drops, and the rheology of dilute emulsions in simple shear flow, Computers & Fluids, 23(2) (1994) 251-278.
[5] J.M. Rallison, Note on the time-dependent deformation of a viscous drop which is almost spherical, Journal of Fluid Mechanics, 98(3) (2006) 625-633.
[6] Y. Mei, G. Li, P. Moldenaers, R. Cardinaels, Dynamics of particle-covered droplets in shear flow: unusual breakup and deformation hysteresis, Soft Matter, 12(47) (2016) 9407-9412.
[7] H. Wang, Z.-Y. Zhang, Y.-M. Yang, H.-S. Zhang, Surface tension effects on the behaviour of a rising bubble driven by buoyancy force, Chinese Physics B, 19(2) (2010) 026801.
[8] A.E. Komrakova, O. Shardt, D. Eskin, J.J. Derksen, Effects of dispersed phase viscosity on drop deformation and breakup in inertial shear flow, Chemical Engineering Science, 126(Supplement C) (2015) 150-159.
[9] The viscosity of a fluid containing small drops of another fluid, Proceedings of the Royal Society of London. Series A, 138(834) (1932) 41.
[10] F. Riccardi, E. Kishta, B. Richard, A step-by-step global crack-tracking approach in E-FEM simulations of quasi-brittle materials, Engineering Fracture Mechanics, 170 (2017) 44-58.
[11] H. Isakari, T. Kondo, T. Takahashi, T. Matsumoto, A level-set-based topology optimisation for acoustic– elastic coupled problems with a fast BEM–FEM solver, Computer Methods in Applied Mechanics and Engineering, 315 (2017) 501-521.
[12] T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing, International Journal for Numerical Methods in Engineering, 45(5) (1999) 601-620.
[13] N. Moës, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering, 46(1) (1999) 131-150.
[14] A. Fahsi, A. Soulaïmani, Numerical investigations of the XFEM for solving two-phase incompressible flows, International Journal of Computational Fluid Dynamics, 31(3) (2017) 135-155.
[15] J. Chessa, P. Smolinski, T. Belytschko, The extended finite element method (XFEM) for solidification problems, International Journal for Numerical Methods in Engineering, 53(8) (2002) 1959-1977.
[16] S. Pawel, A two-dimensional simulation of solidification processes in materials with thermo- dependent properties using XFEM, International Journal of Numerical Methods for Heat & Fluid Flow, 26(6) (2016) 1661-1683.
[17] A. Cosimo, V. Fachinotti, A. Cardona, An enrichment scheme for solidification problems, Computational Mechanics, 52(1) (2013) 17-35.
[18] J. Chessa, T. Belytschko, An enriched finite element method and level sets for axisymmetric two-phase flow with surface tension, International Journal for Numerical Methods in Engineering, 58(13) (2003) 2041-2064.
[19] J. Chessa, H. Wang, T. Belytschko, On the construction of blending elements for local partition of unity enriched finite elements, International Journal for Numerical Methods in Engineering, 57(7) (2003) 1015-1038.
[20] G. Legrain, N. Moës, A. Huerta, Stability of incompressible formulations enriched with X-FEM, Computer Methods in Applied Mechanics and Engineering, 197(21–24) (2008) 1835-1849.
[21] N. Sukumar, J.E. Dolbow, N. Moës, Extended finite element method in computational fracture mechanics: a retrospective examination, International Journal of Fracture, 196(1) (2015) 189-206.
[22] M. Ndeffo, P. Massin, N. Moes, Implémentation robuste pour maîtriser le conditionnement et la précision des modélisations X-FEM, in: 12e Colloque national en calcul des structures, Giens, France, 2015.
[23] E.B. Chin, J.B. Lasserre, N. Sukumar, Modeling crack discontinuities without element-partitioning in the extended finite element method, International Journal for Numerical Methods in Engineering, 110(11) (2017) 1021-1048.
[24] E. Béchet, H. Minnebo, N. Moës, B. Burgardt, Improved implementation and robustness study of the X-FEM for stress analysis around cracks, International Journal for Numerical Methods in Engineering, 64(8) (2005) 1033-1056.
[25] T.-P. Fries, T. Belytschko, The extended/generalized finite element method: An overview of the method and its applications, International Journal for Numerical Methods in Engineering, 84(3) (2010) 253-304.
[26] T.-P. Fries, Towards higher-order XFEM for interfacial flows, PAMM, 15(1) (2015) 507-508.
[27] M. Schätzer, T.-P. Fries, Fitting stress intensity factors from crack opening displacements in 2D and 3D XFEM, PAMM, 15(1) (2015) 149-150.
[28] T.-P. Fries, A. Zilian, On time integration in the XFEM, International Journal for Numerical Methods in Engineering, 79(1) (2009) 69-93.
[29] S. Groß, A. Reusken, An extended pressure finite element space for two-phase incompressible flows with surface tension, Journal of Computational Physics, 224(1) (2007) 40-58.
[30] S. Gross, T. Ludescher, M. Olshanskii, A. Reusken, Robust Preconditioning for XFEM Applied to Time- Dependent Stokes Problems, SIAM Journal on Scientific Computing, 38(6) (2016) A3492-A3514.
[31] W. Aniszewski, T. Ménard, M. Marek, Erratum to: “Volume of Fluid (VOF) type advection methods in two-phase flow: A comparative study”. [Comput Fluids 97 (2014) 52–73], Computers & Fluids, 152 (2017) 193-194.
[32] H.V. Patel, S. Das, J.A.M. Kuipers, J.T. Padding, E.A.J.F. Peters, A coupled Volume of Fluid and Immersed Boundary Method for simulating 3D multiphase flows with contact line dynamics in complex geometries, Chemical Engineering Science, 166 (2017) 28-41.
[33] M.H. Cho, H.G. Choi, J.Y. Yoo, A direct reinitialization approach of level-set/splitting finite element method for simulating incompressible two- phase flows, International Journal for Numerical Methods in Fluids, 67(11) (2011) 1637-1654.
[34] H. Sauerland, T.-P. Fries, The extended finite element method for two-phase and free-surface flows: A systematic study, Journal of Computational Physics, 230(9) (2011) 3369-3390.
[35] T. Chinyoka, Y.Y. Renardy, M. Renardy, D.B. Khismatullin, Two-dimensional study of drop deformation under simple shear for Oldroyd-B liquids, Journal of Non-Newtonian Fluid Mechanics, 130(1) (2005) 45-56.
[36] H. Hua, Y. Li, J. Shin, H.-k. Song, J. Kim, Effect of confinement on droplet deformation in shear flow, International Journal of Computational Fluid Dynamics, 27(8-10) (2013) 317-331.
[37] A. Shamekhi, K. Sadeghy, Cavity flow simulation of Carreau–Yasuda non-Newtonian fluids using PIM meshfree method, Applied Mathematical Modelling, 33(11) (2009) 4131-4145.
[38] T.-P. Fries, A corrected XFEM approximation without problems in blending elements, International Journal for Numerical Methods in Engineering, 75(5) (2008) 503-532.