مطالعه تغییر شکل قطره در جریان بین دوصفحه موازی متحرک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی پلیمر، دانشگاه صنعتی سهند، شهر جدید سهند، تبریز، استان آذربایجان شرقی، ایران

2 دانشگاه صنعتی سهند

3 عضو هیئت علمی

4 موسسه تحقیقات مواد پلیمری لایبنیتس، دانشگاه صنعتی درسدن آلمان

چکیده

روش اجزا محدود تعمیم یافته یکی از روش‌های نوین در حیطه شبیه‌سازی فرآیندهای دارای ناپیوستگی در خواص است که با اصلاح تابع تقریب و کاهش معنادار محاسبات نسبت به سایر روش‌های مرسوم، امروزه بسیار مورد توجه قرار گرفته است. با این حال، این روش در حیطه مکانیک سیالات بسیار نوپا است. لذا در این پژوهش با استفاده از روش اجزا محدود تعمیم یافته به عنوان یک ابزار، به بررسی رفتار یک قطره و عوامل تأثیرگذار بر آن در سامانه‌های نیوتنی-نیوتنی و غیرنیوتنی-نیوتنی اقدام گردید. نتایج به دست آمده در این پژوهش و انطباق بسیار خوب آن با نتایج سایر محققان، حاکی از قابلیت استفاده از این روش به عنوان روشی بهینه در حل عددی مسائل مربوط به سیالات است. در این پژوهش با استفاده از روش اجزا محدود تعمیم یافته، امکان مطالعه رفتار قطره برای حالاتی که تفاوت زیادی میان مشخصات فیزیکی و رئولوژیکی سازنده‌ها از قبیل نسبت ویسکوزیته و کشش بین سطحی وجود داشت، فراهم گردید. نتایج به دست آمده در این پژوهش نشان داد که رابطه معکوس میان اندازه نهایی قطره با نسبت ویسکوزیته سازنده‌ها ، با ثابت نگاه داشتن پارامترهای رئولوژیکی، وجود دارد. همچنین، مشاهده گردید با افزایش اندازه قطره و اثر دیواره‌ها، میزان تغییرفرم قطره در تمامی نسبت‌های ویسکوزیته افزایش می یابد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Droplet Deformation Between Two Moving Parallel Plates

نویسندگان [English]

  • Mahdi Salami Hosseini 1
  • Mohammad ali moeeni 2
  • mirkarim razavi aghjeh 3
  • mahdi mostafaian 4
1 Polymer Engineering Department, Sahand University of Technology
2 sahand university student
3 faculty member
4 Leibniz Institute for Polymer Research, Dresden University of Technology
چکیده [English]

One of the most important and challenging subjects for scientists is the numerical simulation of the transport phenomena in heterogeneous media. The discontinuity in the properties causes computational errors leading to incorrect estimation of the exact values. The extended finite element method is one of the powerful tools to predict the behavior of heterogenic materials and phenomena. In the present study, we attempted to adapt the extended finite element method to study the flow of a two phase system and investigate the effect of different material and operational parameters such as Capillary number on the drop deformation process in Newtonian/Newtonian and non-Newtonian/ Newtonian systems. The results showed a good agreement with the experimental ones and complete compliance with other methods in benchmark studies. The results indicated that increasing the initial radius of the droplet would increase the steady-state deformation parameter. Moreover, it was shown that increasing viscosity ratio suppressed the droplet deformation. The effect of non-Newtonian fluid behavior was also investigated for a Carreau fluid. Furthermore, the distribution of shear rate around the droplet was discussed.

کلیدواژه‌ها [English]

  • extended finite element method
  • droplet deformation
  • Two-phase systems
  • viscosity
  • Interfacial tension
[1] P. Van Puyvelde, A. Vananroye, R. Cardinaels, P. Moldenaers, Review on morphology development of immiscible blends in confined shear flow, Polymer, 49(25) (2008) 5363-5372.
[2] C.L. Tucker Iii, P. Moldenaers, MICROSTRUCTURAL EVOLUTION IN POLYMER BLENDS, Annual Review of Fluid Mechanics, 34(1) (2002) 177-210.
[3] S.L. Ortiz, J.S. Lee, B. Figueroa-Espinoza, B. Mena, An experimental note on the deformation and breakup of viscoelastic droplets rising in non-Newtonian fluids, Rheologica Acta, 55(11) (2016) 879-887.
[4]  M.R. Kennedy, C. Pozrikidis, R. Skalak, Motion and deformation of liquid drops, and the rheology of dilute emulsions in simple shear flow, Computers & Fluids, 23(2) (1994) 251-278.
[5]  J.M. Rallison, Note on the time-dependent deformation of a viscous drop which is almost spherical, Journal of Fluid Mechanics, 98(3) (2006) 625-633.
[6]  Y. Mei, G. Li, P. Moldenaers, R. Cardinaels, Dynamics of particle-covered droplets in shear flow: unusual breakup and deformation hysteresis, Soft Matter, 12(47) (2016) 9407-9412.
[7]  H. Wang, Z.-Y. Zhang, Y.-M. Yang, H.-S. Zhang, Surface tension effects on the behaviour of a rising bubble driven by buoyancy force, Chinese Physics B, 19(2) (2010) 026801.
[8]  A.E. Komrakova, O. Shardt, D. Eskin, J.J. Derksen, Effects of dispersed phase viscosity on drop deformation and breakup in inertial shear flow, Chemical Engineering Science, 126(Supplement C) (2015) 150-159.
[9]  The viscosity of a fluid containing small drops of another fluid, Proceedings of the Royal Society of London. Series A, 138(834) (1932) 41.
[10]   F. Riccardi, E. Kishta, B. Richard, A step-by-step global crack-tracking approach in E-FEM simulations of quasi-brittle materials, Engineering Fracture Mechanics, 170 (2017) 44-58.
[11]   H. Isakari, T. Kondo, T. Takahashi, T. Matsumoto, A level-set-based topology optimisation for acoustic– elastic coupled problems with a fast BEM–FEM solver, Computer Methods in Applied Mechanics and Engineering, 315 (2017) 501-521.
[12]   T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing, International Journal for Numerical Methods in Engineering, 45(5) (1999) 601-620.
[13]  N. Moës, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering, 46(1) (1999) 131-150.
[14]  A. Fahsi, A. Soulaïmani, Numerical  investigations of the XFEM for solving two-phase incompressible flows, International Journal of Computational Fluid Dynamics, 31(3) (2017) 135-155.
[15]  J. Chessa, P. Smolinski, T. Belytschko, The extended finite element method (XFEM) for solidification problems, International Journal for Numerical Methods in Engineering, 53(8) (2002) 1959-1977.
[16]  S. Pawel, A two-dimensional simulation of solidification processes in materials with thermo- dependent properties using XFEM, International Journal of Numerical Methods for Heat & Fluid Flow, 26(6) (2016) 1661-1683.
[17]   A. Cosimo, V. Fachinotti, A. Cardona, An enrichment scheme for solidification problems, Computational Mechanics, 52(1) (2013) 17-35.
[18]  J. Chessa, T. Belytschko, An enriched finite element method and level sets for axisymmetric two-phase flow with surface tension, International Journal for Numerical Methods in Engineering, 58(13) (2003) 2041-2064.
[19]   J. Chessa, H. Wang, T. Belytschko, On the construction of blending elements for local partition of unity enriched finite elements, International Journal for Numerical Methods in Engineering, 57(7) (2003) 1015-1038.
[20]  G. Legrain, N. Moës, A. Huerta, Stability of incompressible formulations enriched with X-FEM, Computer Methods in Applied Mechanics and Engineering, 197(21–24) (2008) 1835-1849.
[21]   N. Sukumar, J.E. Dolbow, N. Moës, Extended finite element method in computational fracture mechanics: a retrospective examination, International Journal of Fracture, 196(1) (2015) 189-206.
[22]   M. Ndeffo, P. Massin, N. Moes, Implémentation robuste pour maîtriser le conditionnement et la précision des modélisations X-FEM, in: 12e Colloque national en calcul des structures, Giens, France, 2015.
[23]   E.B. Chin, J.B. Lasserre, N. Sukumar, Modeling crack discontinuities without element-partitioning in the extended finite element method, International Journal for Numerical Methods in Engineering, 110(11) (2017) 1021-1048.
[24]    E. Béchet, H. Minnebo, N. Moës, B. Burgardt, Improved implementation and robustness study of the X-FEM for stress analysis around cracks, International Journal for Numerical Methods in Engineering, 64(8) (2005) 1033-1056.
[25]  T.-P. Fries, T. Belytschko, The extended/generalized finite element method: An overview of the method and its applications, International Journal for Numerical Methods in Engineering, 84(3) (2010) 253-304.
[26] T.-P. Fries, Towards higher-order XFEM for interfacial flows, PAMM, 15(1) (2015) 507-508.
[27]    M. Schätzer, T.-P. Fries, Fitting stress intensity factors from crack opening displacements in 2D and 3D XFEM, PAMM, 15(1) (2015) 149-150.
[28]   T.-P. Fries, A. Zilian, On time integration in the XFEM, International Journal for Numerical Methods in Engineering, 79(1) (2009) 69-93.
[29]   S. Groß, A. Reusken, An extended pressure finite element space for two-phase incompressible flows with surface tension, Journal of Computational Physics, 224(1) (2007) 40-58.
[30]  S. Gross, T. Ludescher, M. Olshanskii, A. Reusken, Robust Preconditioning for XFEM Applied to Time- Dependent Stokes Problems, SIAM Journal on Scientific Computing, 38(6) (2016) A3492-A3514.
[31]   W. Aniszewski, T. Ménard, M. Marek, Erratum to: “Volume of Fluid  (VOF)  type  advection  methods in two-phase flow: A comparative study”. [Comput Fluids 97 (2014) 52–73], Computers & Fluids, 152 (2017) 193-194.
[32]   H.V. Patel, S. Das, J.A.M. Kuipers, J.T. Padding, E.A.J.F. Peters, A coupled Volume of Fluid and Immersed Boundary Method for simulating 3D multiphase flows with contact line dynamics in complex geometries, Chemical Engineering Science, 166 (2017) 28-41.
[33]      M.H. Cho, H.G. Choi, J.Y. Yoo, A direct reinitialization approach of level-set/splitting finite element method for simulating incompressible two- phase flows, International Journal for Numerical Methods in Fluids, 67(11) (2011) 1637-1654.
[34]  H. Sauerland, T.-P. Fries, The extended finite element method for two-phase and free-surface flows: A systematic study, Journal of Computational Physics, 230(9) (2011) 3369-3390.
[35] T. Chinyoka, Y.Y. Renardy, M. Renardy, D.B. Khismatullin, Two-dimensional study of drop deformation under simple shear for Oldroyd-B liquids, Journal of Non-Newtonian Fluid Mechanics, 130(1) (2005) 45-56.
[36] H. Hua, Y.  Li, J. Shin, H.-k. Song, J. Kim, Effect  of confinement on droplet deformation in  shear  flow, International Journal of Computational Fluid Dynamics, 27(8-10) (2013) 317-331.
[37]   A. Shamekhi, K. Sadeghy, Cavity flow simulation of Carreau–Yasuda non-Newtonian fluids using PIM meshfree method, Applied Mathematical Modelling, 33(11) (2009) 4131-4145.
[38]     T.-P. Fries, A corrected XFEM approximation without problems in blending elements, International Journal for Numerical Methods in Engineering, 75(5) (2008) 503-532.