جستجوی ترک در ورق‌های کمانش‌یافته به کمک روش المان کوادراتور دیفرانسیلی و روش برنامه‌نویسی مرتبه دوم متوالی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

در این پژوهش، روشی جهت شناسایی ترک در سازه‌های ورقی کمانش یافته با استفاده از روش المان کوادراتور دیفرانسیلی و روش برنامه نویسی مرتبه دوم متوالی ارائه شده است. پژوهش پیش‌رو شامل دو گام اساسی می‌باشد. در گام نخست روشی جهت محاسبه فرکانس‌های ورق‌های کمانش یافته ترک‌دار ارائه شده است. در اینجا ترک به صورت باز در نظر گرفته شده و به کمک فنرهای چرخشی خطی مدلسازی گردیده است. معادلات حاکم بر رفتار ورق مورد نظر با در نظر گرفتن تاثیر تغییر­شکل‌های برشی و نقص هندسی اولیه استخراج شده است. پس از آن با در نظر گرفتن پاسخ به صورت مجموع تغییر­شکل­های استاتیکی (پس از کمانش) و دینامیکی (ارتعاشات) معادلات موجود به دو دستگاه معادلات دیفرانسیل پس از کمانش (مستقل از زمان) و ارتعاشات تبدیل شده است. با کمک تحلیل مقادیر ویژه معادلات دینامیکی بدست آمده، فرکانس‌های طبیعی ارتعاشات ورق ترک‌دار حول حالت کمانش یافته آن حاصل می‌شود. در گام دوم با استفاده از روش ارائه شده در گام نخست و با کمک روش بهینه‌سازی برنامه‌نویسی مرتبه دوم متوالی، الگوریتمی جهت تعیین خصوصیات ترک در سازه به کمک فرکانس‌های ارتعاشات طبیعی سازه ارائه شده است در این مرحله مجموع وزنی مربعات خطای بین فرکانس‌های طبیعی محاسبه شده و فرکانس‌های طبیعی اندازه‌گیری شده به کمک تحلیل مودال تجربی، به عنوان تابع هزینه انتخاب شده و به کمک مینیمم‌سازی این تابع، خصوصیات ترک در سازه تعیین می‌گردد. به منظور بررسی صحت و دقت روش معرفی شده، آزمایش‌های تجربی انجام شده که نتایج حاصل موید توانایی این روش در تخمین پارامترهای ترک می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Crack identification in postbuckled plates using differential quadrature element method and sequential quadratic programming

نویسندگان [English]

  • Hesam Makvandi
  • Shapour Moradi
  • Davood Poorveis
  • Kourosh Heidari Shirazi
Department of mechanical engineering, Faculty of engineering, Shahid Chamran university of Ahvaz, Ahvaz, Iran
چکیده [English]

In this study, an innovative method for crack identification in buckled plates using differential quadrature element method (DQEM) and sequential quadratic programming (SQP) method is proposed. This study consists of two steps. In first step, a numerical method is applied to calculate the frequencies of buckled cracked plates. Cracks are assumed to be open and modeled as linear rotational spring. Governing equations are extracted considering effects of shear deformations and initial geometric imperfection. Then, considering the solution as summation of static solution (postbuckling) and dynamic solution, the governing equations are converted into two different equation sets; postbuckling equations and vibration equations. The natural frequencies can be obtained solving these equation sets. In second step, SQP optimization method and the method used in first step combined to make a new method for identification of crack specification using natural frequencies. In this step, a weighted sum of square of differences between calculated frequencies and experimental frequencies considered as cost function and used to identify crack properties. Finally, the accuracy and precision of proposed method verified using some experimental and numerical case studies.

کلیدواژه‌ها [English]

  • Crack identification
  • postbuckled plate
  • differential quadrature element method
  • sequential quadratic programming
[1] M.K. Yoon, Heidar, D., Gillespie Jr, J.W., Ratcliffe, C.P., Crane, R.M. , Local damage detection using two-dimensional gapped smoothing method, Journal of sound and vibration, 279 (2005) 119-139.
[2] C.P. Ratcliffe, Damage detection using a modified Laplacian Operator on mode shape, Journal of sound and vibration, 240 (1997) 505-517.
[3] P. Cronwell, Doebling, S.W. , Farrar, C.R. , Application of the strain energy damage detection method to platelike structures, Journal of Sound and Vibration 224 (1999) 359-374.
[4] N. Stubbs, Kim, J.T. , Damage localization in structures without baseline modal parameters, AIAA Journal, 34 (1996) 1644-1649.
[5] L.J. Hadjileontiadis, Douka, E., Kurtosis analysis for crack detection in thin isotropic rectangular plates, Journal of Engineering Structures 29 (2007) 2353-2364.
[6] L.J. Hadjileontiadis, Douka, E. , Trochidis, A. , Crack detection in beams using kurtosis, computers & structures, 83 (2005) 909-919.
[7] C.C. Chang, Chen, L.W., Damage detection of a rectangular plate by spatial wavelet based approach, Journal of applied  acoustics, 65 (2004) 819-832.
[8] W. Fan, Qiao, P. , A 2-D continuous wavelet transform of mode shape data for damage detection of plate structures, International journal of solids and structures 46 (2009) 4379-4395.
[9] Y.Z. Fu, Lu, Z.R. , Liu, J.K. , Damage identification in plates using finite element model updating in time domain, Journal of sound and vibration 332 (2013) 7018-7032.
[10] X. Lin, Yuan, F.G. , Damage detection of plate using Migration technique, Journal of intelligent material systems and structures, 12 (2001) 469-482.
[11] S. Moradi, Alimouri, P. , Crack detection of plate structures using differential quadrature method, Journal of Mechanical Engineering Science, 227(7) (2014) 1495-1504.
[12] T. Horibe, Watanabe, K. , Crack identification of plates using Genetic algorithm, JSME international Journal, Series A, 49(3) (2006) 403-410.
[13] S.M. Yadavar Nikravesh, Nezamivand Chegini, S. , 2013, Meccanica, 48 (Crack identification in double-cracked plates using wavelet analysis) 2075-2098.
[14] D.G. Park, Angani, C.S.,  Rao, B. P. C.,  Vértesy, G.,  Lee, D.H.,  Kim, K.H. , Detection of the subsurface cracks in a stainless steel plate using pulsed eddy current, Journal of Nondestructive Evaluation, 32(4) (2013) 350-353.
[15] J. Jingpin, Xiangji, M.,  Cunfu, H.,  Bin, W. , Nonlinear lamb wave-mixing technique for micro-crack detection in plates, NDT & E International, 85 (2017) 63-71.
[16] S. Sandesh, Shankar, K. , Damage identification of a thin plate in the time domain with substructuring - an application of inverse problem, International Journal of Applied Science and Engineering, 7(1) (2009) 79-93.
[17] H.F. Lam, Yin, T. , Statistical detection of multiple cracks on thin plates utilizing dynamic response, Engineering structures, 32 (2010) 3145-3152.
[18] S.E. Khadem, Rezaei, M. , An analytical approach for obtaining the location and depth of an all-over part-through crack on externally in-plane loaded rectangular plate using vibration analysis, Journal of Sound and Vibration, 230(2) (2000) 291-308.
[19] D. Dinh-Cong, Vo-Duy, T.,  Ho-Huu, V.,  Dang-Trung, H.,   Nguyen-Thoi, T. , An efficient multi-stage optimization approach for damage detection in plate structures, Advances in Engineering Software, 112 (2017) 76–87.
[20] A. Nicknam, Hosseini, M.H. , Structural damage localization and evaluation based on modal data via a new evolutionary algorithm, Arch Appl Mech, 82 (2011) 191–203.
[21] S. Moradi, Jamshidi Moghadam, P. , Crack identification in postbuckled beam-type strutures, Smart structures and systems, An Int’l journal, 15(5) (2015) 1233-1252.
[22] L. Chen, Zhang, Z.,  Zhang, W. , Inner boundary conditions of mindlin plate with a finite-length part-through crack, in:  Second International Conference on Mechanic Automation and Control Engineering, )2011( 1365-1368.
[23] F. Delale, F. Erdogan, Line-Spring Model for Surface Cracks in Reissener Plate, Int. J Eng. Sci.,  19)10( )1981( 1331-1340.
[24] B.D.R. Forde, Stiemer, S.F. , Improved arc length orthogonality methods for nonlinear finite element analysis, Computers & Structures, 27 (1987) 625-630.
[25] E. Riks, The application of Newton’s method to the problem of elastic stability, J Appl Mech, 39 (1972) 1060-1065.
[26] G.A. Wempner, Discrete approximation related to nonlinear theories of solids, Int J Solids and Structures, 7 (1971) 1581-1599.