[1] A. Polikeit, S.J. Ferguson, L.P. Nolte, T.E. Orr, Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis, European Spine Journal, 12(4) (2003) 413-420.
[2] A.R. Tahavvor, P. Zarrin Chang, S. Abadi Iranagh, S. Heidari, Numerical simulation of realistic human lumbar spine model under compressive force, axial rotation and lateral bending loads, Modares Mechanical Engineering, 16(11) (2016) 54-60.
[3] A. Rohlmann, S. Neller, L. Claes, G. Bergmann, H.-J. Wilke, Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine, Spine, 26(24) (2001) E557-E561.
[4] S. Naserkhaki, J.L. Jaremko, M. El-Rich, Effects of inter-individual lumbar spine geometry variation on load-sharing: Geometrically personalized Finite Element study, Journal of biomechanics, 49(13) (2016) 2909-2917.
[5] S. Naserkhaki, N. Arjmand, A. Shirazi-Adl, F. Farahmand, M. El-Rich, Effects of eight different ligament property datasets on biomechanics of a lumbar L4-L5 finite element model, Journal of Biomechanics, (2017).
[6] D. Jakobs, A. Schultz, Material constants for a finite element model of the intervertebral disk with a fiber composite annulus, Journal of biomechanical engineering, 108 (1986) 1.
[7] J.R. Meakin, J.E. Reid, D.W. Hukins, Replacing the nucleus pulposus of the intervertebral disc, Clinical Biomechanics, 16(7) (2001) 560-565.
[8] V. Goel, B. Monroe, L. Gilbertson, P. Brinckmann, Interlaminar Shear Stresses and Laminae Separation in a Disc: Finite Element Analysis of the L3-L4 Motion Segment Subjected to Axial Compressive Loads, Spine, 20(6) (1995) 689-698.
[9] A. Shirazi-Adl, A.M. Ahmed, S.C. Shrivastava, Mechanical response of a lumbar motion segment in axial torque alone and combined with compression, Spine, 11(9) (1986) 914-927.
[10] N. Oreskes, K. Shrader-Frechette, K. Belitz, Verification, validation, and confirmation of numerical models in the earth sciences, Science, 263(5147) (1994) 641-646.
[11] M. Viceconti, S. Olsen, L.-P. Nolte, K. Burton, Extracting clinically relevant data from finite element simulations, Clinical Biomechanics, 20(5) (2005) 451-454.
[12] J.R. Meakin, Replacing the nucleus pulposus of the intervertebral disk: prediction of suitable properties of a replacement material using finite element analysis, Journal of Materials Science: Materials in Medicine, 12(3) (2001) 207-213.
[13] A. Rao, G. Dumas, Influence of material properties on the mechanical behaviour of the L5-S1 intervertebral disc in compression: a nonlinear finite element study, Journal of biomedical engineering, 13(2) (1991) 139-151.
[14] N. Yoganandan, S. Kumaresan, L. Voo, F. Pintar, Finite element model of the human lower cervical spine: parametric analysis of the C4-C6 unit, Journal of biomechanical engineering, 119(1) (1997) 87-92.
[15] J.T.-M. Cheung, M. Zhang, D.H.-K. Chow, Biomechanical responses of the intervertebral joints to static and vibrational loading: a finite element study, Clinical Biomechanics, 18(9) (2003) 790-799.
[16] M. Fagan, S. Julian, D. Siddall, A. Mohsen, Patient-specific spine models. Part 1: Finite element analysis of the lumbar intervertebral disc—a material sensitivity study, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 216(5) (2002) 299-314.
[17] A. Rohlmann, T. Zander, H. Schmidt, H.-J. Wilke, G. Bergmann, Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method, Journal of biomechanics, 39(13) (2006) 2484-2490.
[18] S. Kumaresan, N. Yoganandan, F.A. Pintar, Finite element analysis of the cervical spine: a material property sensitivity study, Clinical Biomechanics, 14(1) (1999) 41-53.
[19] T.H. Smit, The mechanical significance of the trabecular bone architecture in a human vertebra, PhD thesis, Technical University of Hamburg-Harburg, (1996).
[20] U.M. Ayturk, C.M. Puttlitz, Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine, Computer methods in biomechanics and biomedical engineering, 14(8) (2011) 695-705.
[21] M. El-Rich, P.-J. Arnoux, E. Wagnac, C. Brunet, C.-E. Aubin, Finite element investigation of the loading rate effect on the spinal load-sharing changes under impact conditions, Journal of biomechanics, 42(9) (2009) 1252-1262.
[22] H. Schmidt, A. Kettler, F. Heuer, U. Simon, L. Claes, H.-J. Wilke, Intradiscal pressure, shear strain, and fiber strain in the intervertebral disc under combined loading, Spine, 32(7) (2007) 748-755.
[23] H. Schmidt, F. Heuer, J. Drumm, Z. Klezl, L. Claes, H.-J. Wilke, Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment, Clinical biomechanics, 22(4) (2007) 377-384.
[24] C. Breau, A. Shirazi-Adl, J. De Guise, Reconstruction of a human ligamentous lumbar spine using CT images—a three-dimensional finite element mesh generation, Annals of biomedical engineering, 19(3) (1991) 291-302.
[25] F. Heuer, H. Schmidt, Z. Klezl, L. Claes, H.-J. Wilke, Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle, Journal of biomechanics, 40(2) (2007) 271-280.
[26] A. Schultz, D. Warwick, M. Berkson, A. Nachemson, Mechanical properties of human lumbar spine motion segments, J Biomech Eng, 101 (1979) 46-52.
[27] A. Rohlmann, L. Bauer, T. Zander, G. Bergmann, H.-J. Wilke, Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data, Journal of Biomechanics, 39(6) (2006) 981-989.
[28] K. Goto, N. Tajima, E. Chosa, K. Totoribe, S. Kubo, H. Kuroki, T. Arai, Effects of lumbar spinal fusion on the other lumbar intervertebral levels (three-dimensional finite element analysis), Journal of Orthopaedic Science, 8(4) (2003) 577-584.
[29] W.M. Park, K. Kim, Y.H. Kim, Effects of degenerated intervertebral discs on intersegmental rotations, intradiscal pressures, and facet joint forces of the whole lumbar spine, Computers in biology and medicine, 43(9) (2013) 1234-1240.
[30] S.-L. Shih, C.-L. Liu, L.-Y. Huang, C.-H. Huang, C.-S. Chen, Effects of cord pretension and stiffness of the Dynesys system spacer on the biomechanics of spinal decompression-a finite element study, BMC musculoskeletal disorders, 14(1) (2013) 191.
[31] M. Dreischarf, T. Zander, A. Shirazi-Adl, C. Puttlitz, C. Adam, C. Chen, V. Goel, A. Kiapour, Y. Kim, K. Labus, Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together, Journal of biomechanics, 47(8) (2014) 1757-1766.
[32] H. Schmidt, F. Heuer, U. Simon, A. Kettler, A. Rohlmann, L. Claes, H.-J. Wilke, Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus, Clinical Biomechanics, 21(4) (2006) 337-344.
[33] E. Wagnac, P.-J. Arnoux, A. Garo, M. El-Rich, C.-E. Aubin, Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads, Journal of biomechanical engineering, 133(10) (2011) 101007.
[34] R.W. Fry, T.F. Alamin, L.I. Voronov, L.C. Fielding, A.J. Ghanayem, A. Parikh, G. Carandang, B.W. Mcintosh, R.M. Havey, A.G. Patwardhan, Compressive preload reduces segmental flexion instability after progressive destabilization of the lumbar spine, Spine, 39(2) (2014) E74-E81.
[35] S.M. Renner, R.N. Natarajan, A.G. Patwardhan, R.M. Havey, L.I. Voronov, B.Y. Guo, G.B. Andersson, H.S. An, Novel model to analyze the effect of a large compressive follower pre-load on range of motions in a lumbar spine, Journal of Biomechanics, 40(6) (2007) 1326-1332.
[36] S. Naserkhaki, J.L. Jaremko, G. Kawchuk, S. Adeeb, M. El-Rich, Investigation of lumbosacral spine anatomical variation effect on load-partitioning under follower load using geometrically personalized finite element model, in: Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), Anonymous, 2014.
[37] K. Sato, S. Kikuchi, T. Yonezawa, In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems, Spine, 24(23) (1999) 2468.
[38] H.-J. Wilke, P. Neef, B. Hinz, H. Seidel, L. Claes, Intradiscal pressure together with anthropometric data–a data set for the validation of models, Clinical Biomechanics, 16 (2001) S111-S126.
[39] P. Brinckmann, H. Grootenboer, Change of Disc Height, Radial Disc Bulge, and Intradiscal Pressure From Discectomy An in Vitro Investigation on Human Lumbar Discs, Spine, 16(6) (1991) 641-646.
[40] A. Schultz, G. Andersson, R. Ortengren, K. Haderspeck, A. Nachemson, Loads on the lumbar spine. Validation of a biomechanical analysis by measurements of intradiscal pressures and myoelectric signals, JBJS, 64(5) (1982) 713-720.
[41] S. Naserkhaki, J.L. Jaremko, S. Adeeb, M. El-Rich, On the load-sharing along the ligamentous lumbosacral spine in flexed and extended postures: Finite element study, Journal of biomechanics, 49(6) (2016) 974-982.