[1] J. Pátek, J. Hrubý, J. Klomfar, M. Součková, A.H. Harvey, Reference Correlations for Thermophysical Properties of Liquid Water at 0.1 MPa, J. Phys. Chem., 38(1) (2009) 21-29.
[2] S.U.S. Choi, J.A. Eastman, Enhancing Thermal Conductivity Of Fluids With Nanoparticles, in: ASME International Mechanical Engineering Congress & Exposition, San Francisco, CA, 1995.
[3] A. Sergis, Y. Hardalupas, Molecular Dynamic Simulations of a Simplified Nanofluid, CMST, 20(4) (2014) 113-127.
[4] K.Y. Leong, N.M. Fadhillahanafi, S.P. Chew, Viscosity Characteristic Of Carbon Nanotube Based Nanofluids At Room Temperature, ARPN Journal of Engineering and Applied Sciences, 11(10) (2016) 6584-6588.
[5] S.K. Kolase, V.N. Deshmukh, S. Radhakrishnan, Experimental Investigation of Heat Transfer Properties and Viscosity of CNT Based Nanofluid in Low Temperature Conditions, International Engineering Research Journal (IERJ), Special Issue 2 (2015) 4718-4725.
[6] G. Vakili-Nezhaad, M. Al-Wadhahi, A.M. Gujrathi, R. Al-Maamari, M. Mohammadi, Effect Of Temperature And Diameter Of Narrow Single-Walled Carbon Nanotubes On The Viscosity Of Nanofluid: A Molecular Dynamics Study, Fluid Phase Equilibria 434 (2017) 193-199.
[7] M. Bahiraei, Particle Migration In Nanofluids: A Critical Review, INT J THERM SCI, 109 (2016) 90-113.
[8] J. Ponmozhi, F.A.M.M. Gonçalves, A.G.M. Ferreira, I.M.A. Fonseca, S. Kanagaraj, N. Martins, M.S.A. Oliveira, Thermodynamic and Transport Properties of CNT- Water Based Nanofluids, J NANO RES-SW, 11 (2010) 101-106.
[9] S. Halelfadl, P. Estell, B. Aladag, N. Doner, T. Mar, Viscosity Of Carbon Nanotubes Water Based Nanouids: Inuence Of Concentration And Temperature, INT J THERM SCI, 71 (2013) 111-117.
[10] M. Xing, J. Yu, R. Wang, Thermo-Physical Properties Of Water-Based Single-Walled Carbon Nanotube Nanofluid As Advanced Coolant, APPL THERM ENG, 87 (2015) 344-351.
[11] Z. Said, Thermophysical And Optical Properties Of Swcnts Nanofluids, INT COMMUN HEAT MASS, 78 (2016) 207-213.
[12] M.A. Sabiha, R.M. Mostafizur, R. Saidur, S. Mekhilef, Experimental Investigation On Thermo Physical Properties Of Single Walled Carbon Nanotube Nanofluids, INT J HEAT MASS TRAN, 93 (2016) 862–871.
[13] A.S. Dalkilic, B.O. Küçükyıldırım, A.A. Eker, A. Çebi, S. Tapan, C. Jumpholkul, S. Wongwises, Experimental Investigation On The Viscosity Of Water-Cnt And Antifreeze-Cnt Nanofluids, INT COMMUN HEAT MASS, 80 (2017) 47–59.
[14] W.-Q. Lu, Q.-M. Fan, Study For The Particle’s Scale Effect On Some Thermophysical Properties Of Nanofluids By A Simplified Molecular Dynamics Method, ENG ANAL BOUND ELEM, 32(4) (2008) 282–289.
[15] G. Lu, Y.-Y. Duan, X.-D. Wang, Surface Tension, Viscosity, And Rheology Of Water-Based Nanofluids: A Microscopic Interpretation On The Molecular Level, J Nanopart Res, 16(2564) (2014) 1-11.
[16] V.Y. Rudyak, S.L. Krasnolutskii, Simulation of the Nanofluid Viscosity Coefficient by the Molecular Dynamics Method, TECH PHYS+, 60(6) (2015) 798–804.
[17] V.Ya.Rudyak, S.L.Krasnolutskii, Dependence Of The Viscosity Of Nanofluids On Nanoparticle Size And Material, PHYS LETT A, 378(26-27) (2014) 1845–1849.
[18] Z. Lou, M. Yang, Molecular Dynamics Simulations On The Shear Viscosity Of Al2o3 Nanofluids, Computers & Fluids, 117 (2015) 17-23.
[19] P.J. Daivis, D.J. Evans, Comparison Of Constant Pressure And Constant Volume Nonequilibrium Simulations Of Sheared Model Decane, J CHEM PHYS, 100(1) (1994) 541-547.
[20] M. Mondello, G.S. Grest, Viscosity Calculations Of N -Alkanes By Equilibrium Molecular Dynamics, J CHEM PHYS, 106(22) (1997) 9327-9336.
[21] R. Kubo, Statistical-Mechanical Theory Of Irreversible Processes. I. General Theory And Simple Applications To Magnetic And Conduction Problems, J. Phys. Soc. Jpn., 12(6) (1957) 570–586.
[22] F. Jabbari, A. Rajabpour, S. Saedodin, Thermal Conductivity And Viscosity Of Nanofluids: A Review Of Recent Molecular Dynamics Studies, CHEM ENG SCI, 174 (2017) 67–81.
[23] S. Melchionna, G. Ciccotti, B.L. Holian, Hoover NPT Dynamics For Systems Varying In Shape And Size, MOL PHYS, 78(3) (1993) 533-544.
[24] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comp. Phys., 117 (1995) 1-19.
[25] J.L.F. Abascal, C. Vega, A General Purpose Model For The Condensed Phases Of Water: Tip4p/2005, J CHEM PHYS, 123 (2005) 234505-234501-234505-234512.
[26] J. Tersoff, Modeling Solid-State Chemistry: Interatomic Potentials For Mnlticomponent Systems, PHYS REV B, 39(8) (1989) 5566-5568.
[27] D.W. Brenner, Empirical Potential For Hydrocarbons For Use In Simulating The Chemical Vapor Deposition Of Diamond Films, PHYS REV B, 42(15) (1990) 9458-9471.
[28] D. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, A Second-Generation Reactive Empirical Bond Order (Rebo) Potential Energy Expression For Hydrocarbons, J PHYS-CONDENS MAT, 14 (2002) 783–802.
[29] S. Berber, Y.-K. Kwon, D. Tománek, Unusually High Thermal Conductivity of Carbon Nanotubes, PHYS REV LETT, 84(20) (2000) 4613-4616.
[30] Q. Zheng, G. Su, JianWang, H. Guo, Thermal Conductance For Single Wall Carbon Nanotubes, EUR PHYS J B, 25 (2002) 233-238.
[31] س.ا. جلیلی, شبیه سازی های رایانه ای(دینامیک مولکولی و مونت کارلو), انتشارات دانشگاه خواجه نصیرالدین طوسی, 1390.
[32] P. Hirunsit, P.B. Balbuena, Effects of Confinement on Water Structure and Dynamics: A Molecular Simulation Study, J. Phys. Chem. C, 111 (2007) 1709-1715.
[33] W.G. Hoover, Canonical Dynamics: Equilibrium Phase-Space Distributions, PHYS REV A, 31(3) (1985) 1695-1697.
[34] N. Ahammed, L.G. Asirvatham, S. Wongwises, Effect Of Volume Concentration And Temperature On Viscosity And Surface Tension Of Graphene–Water Nanofluid For Heat Transfer Applications, J Therm Anal Calorim, 123(2) (2015) 1399–1409.