تحلیل غیرموضعی ارتعاشات آشوبناک، رزونانس اولیه و سوپرهارمونیک نانولوله های کربنی تکالیه با در نظر گرفتن اثرات حرارتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مهندسی مکانیک، دانشگاه آزاد اسلامی واحد رامسر، رامسر، ایران

2 مهندسی مکانیک، دانشگاه آزاد اسلامی واحد رشت، رشت، ایران

3 استادیار، گروه مهندسی مکانیک، دانشگاه گلستان، گرگان، ایران

چکیده

در این مقاله با ارائه یک مدل غیرخطی از رفتار دینامیکی نانولوله‌های کربنی تک لایه با فرض دامنه ارتعاشی زیاد روی بستر ویسکوالاستیک تحت اعمال بار خارجی هارمونیک در یک محیط حرارتی به تحلیل رفتار آشوبناک و همچنین تحلیل رزونانس اولیه و سوپرهارمونیک آن‌ها پرداخته شده است. با استفاده از روش گالرکین با توابع شکل مثلثاتی و رانگ کوتای مرتبه چهار معادلات حاکم حل شده است. با به‌کارگیری دیاگرام‌های دوشاخه‌ای و بزرگ‌ترین نمای لیاپانوف پارامترهای آشوب از پارامترهای پریودیک شناسایی شده و رفتار پریودیک و آشوب نانولوله‌های کربنی توسط نمودارهای فازی و نگاشت پوانکاره نشان داده شده است. در ادامه با استفاده از روش مقیاس چندگانه به تحلیل رفتار رزونانس اولیه و سوپرهارمونیک نانولوله‌های کربنی به‌منظور امکان‌سنجی بروز پدیده پرش پرداخته شده است. حساسیت رفتار دینامیکی نسبت به پارامترهای مختلف شامل ضرایب بستر ویسکوالاستیک، پارامتر کنترلی فرکانس و دامنه نیروی خارجی در وقوع پدیده پرش در نانولوله‌های کربنی تک لایه بررسی شد. نتایج نشان می­دهد که دامنه نیروی خارجی، ضرایب بستر ویسکوالاستیک، پارامتر کنترلی فرکانس و تغییرات دما در دو حالت دمابالا و دما پایین دارای اثری قابل توجه بر پاسخ فرکانسی با حضور پدیده پرش دارند. همچنین دامنه تحریک می‌تواند یک عامل کنترل‌کننده بر بروز پدیده آشوب باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Nonlocal Analysis of Chaotic Vibration, Primary and Super-Harmonic Resonance of Single Walled Carbon Nanotube Considering Thermal Effects

نویسندگان [English]

  • Habib Ramezannejad Azarboni 1
  • Hemad Keshavarzpour 2
  • Mohammad Rahimzadeh 3
1 aDepartment of Mechanical Engineering, Ramsar branch, Islamic Azad University, Ramsar, Iran
2 Department of Mechanical Engineering, Rasht branch, Islamic Azad University, Rasht, Iran.
3 Department of Mechanical Engineering, University of Golestan, Gorgan, Iran
چکیده [English]

In this article, a nonlinear elastic Bernoulli–Euler beam model is presented to investigate the chaotic behavior and primary and superharmonic resonance of single walled carbon nanotubes embedded in a visco-elastic medium at an elevated temperature. Using the Galerkin method and fourthorder Runge-Kutta method the governing equation is solved. The bifurcation diagram and largest Lyapunov exponent are employed to detect the critical amplitude of external force of periodic and chaotic response of single walled carbon. Having known the critical values, phase portrait and Poincare maps are presented to observe the periodic and chaotic behavior of the system. Moreover, the amplitude– frequency response for the primary superharmonic resonance of system is derived with the multiple scale method to investigate the feasibility of jump phenomenon. The sensitivity of jump phenomenon are studied for the selected viscoelastic foundation parameters, detuning parameter and external amplitude load. The results show that the amplitude of external force, viscoelastic foundation parameters, detuning parameter and temperature change in the cases of high and low temperature have a significant effect on the frequency response with jump phenomenon of system. In addition, the chaotic vibration of carbon nanotube can be controlled by changing of amplitude of external force.

کلیدواژه‌ها [English]

  • Carbon nanotube
  • Chaos, Bifurcation diagram
  • Jump phenomena
  • Superharmonic resonance
[1]      Y. D. Kuang, X. Q. He, C. Y. Chen, and G. Q. Li, “Analysis of nonlinear vibrations of double-walled carbon nanotubes conveying fluid,” Comput. Mater. Sci., vol. 45, no. 4, pp. 875–880, 2009.
[2]      [2]         Y. Z. Wang and F. M. Li, “Nonlinear primary resonance of nano beam with axial initial load by nonlocal continuum theory,” Int. J. Non. Linear. Mech., vol. 61, pp. 74–79, 2014.
[3]      S. Souayeh and N. Kacem, “Computational models for large amplitude nonlinear vibrations of electrostatically actuated carbon nanotube-based mass sensors,” Sensors Actuators, A Phys., vol. 208, pp. 10–20, 2014.
[4]      Z. Saadatnia, A. Barari, and E. Esmailzadeh, “Nonlinear forced vibration analysis of free-form nanotube conveying fluid,” in 14th IEEE International Conference on Nanotechnology, 2014, no. August, pp. 689–692.
[5]      Z. Saadatnia, E. Esmailzadeh, and D. Younesian, “Nonlinear forced vibration analysis of fluid conveying nanotubes under electromagnetic actuation,” in Volume 4: 19th Design for Manufacturing and the Life Cycle Conference; 8th International Conference on Micro- and Nanosystems, 2014, vol. 4, p. V004T09A001.
[6]      H. Askari and E. Esmailzadeh, “Chaotic and periodic vibration of a carbon nanotube supported by nonlinear foundation,” 14th IEEE Int. Conf. Nanotechnology, IEEE-NANO 2014, pp. 632–635, 2014.
[7]      H. Askari and E. Esmailzadeh, “Forced vibration of fluid conveying carbon nanotubes considering thermal effect and nonlinear foundations,” Compos. Part B Eng., vol. 113, pp. 31–43, 2017.
[8]      T. Xu and M. I. Younis, “Nonlinear dynamics of carbon nanotubes under large electrostatic force,” J. Comput. Nonlinear Dyn., vol. 11, no. 2, p. 21009, Aug. 2015.
[9]      W. Hu and Z. Deng, “Chaos in embedded fluid-conveying single-walled carbon nanotube under transverse harmonic load series,” Nonlinear Dyn., vol. 79, no. 1, pp. 325–333, 2015.
[10]    W. Hu, M. Song, Z. Deng, H. Zou, and B. Wei, “Chaotic region of elastically restrained single-walled carbon nanotube,” Chaos, vol. 27, no. 2, 2017.
[11]    M. Sadeghi-Goughari, S. Jeon, and H. J. Kwon, “Effects of magnetic-fluid flow on structural instability of a carbon nanotube conveying nanoflow under a longitudinal magnetic field,” Phys. Lett. Sect. A Gen. At. Solid State Phys., vol. 381, no. 35, pp. 2898–2905, 2017.
[12]    R. Liu, J. Zhao, and L. Wang, “Nonlinear vibrations of carbon chain resonators tuned by temperature,” Mater. Res. Express, vol. 4, p. 105026, 2017.
[13]    M. Hosseini, R. Bahaadini, and M. Makkiabadi, “Application of the Green function method to flow-thermoelastic forced vibration analysis of viscoelastic carbon nanotubes,” Microfluid. Nanofluidics, vol. 22, no. 1, 2018.
[14] L. Wang, Q. Ni, M. Li and Q. Qian, “The thermal effect on vibration and instability of carbon nanotubes conveying fluid,” Physica E, vol. 40, no. 1, 2008.
[15]      X. Yao and Q. Han, “Buckling analysis of multiwalled carbon nanotubes under torsional load coupling with temperature change,” Journal of Engineering Materials and Technology, vol. 128, no. 1, 2006.
[16]    A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations. Weinheim, Germany: Wiley-VCH Verlag GmbH, 1995.
[17]    F. C. Moon, Chaotic Vibrations: An Introduction for Applied Scientists and Engineers. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2004.