مدل سازی و پیش بینی میزان مصرف انرژی در گلخانه آب دریایی با استفاده از شبکه هوش مصنوعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه هرمزگان

2 شرکت گاز اهواز

چکیده

گلخانه آب دریایی با استفاده از روش رطوبت‌زنی و رطوبت‌زدایی می‌تواند از آب‌های شور و لب شور نمک‌زدایی کرده و آب شیرین تولیدی را برای مصارف کشاورزی گلخانه و هم مصارف شرب مورد بهره‌برداری قرار دهد. پارامترهای زیادی بر عملکرد گلخانه آب دریایی تاثیرگذار هستند. در این مطالعه با استفاده از روش هوشمند شبکه عصبی مصنوعی به بررسی پارامترهای عرض و طول گلخانه، ارتفاع اواپراتور اول و ضریب گذردهی سقف گلخانه بر روی میزان مصرف انرژی در گلخانه آب دریایی پرداخته شده است. شبکه‌های عصبی مصنوعی پرسپترون چند لایه برای مدل‎سازی مورد استفاده قرار گرفته است. ساختار مناسبی برای این روش به دست آمد و برای ارزیابی عملکرد شبکه از آمارهای ریاضی درصد میانگین مطلق خطا، ریشه میانگین دوم خطا و توان دوم ضریب همبستگی استفاده شده است. روش موجود تطبیق خوبی با داده‌های آزمایشگاهی دارد. با استفاده از شبکه بهینه ایجاد شده، تاثیر هر پارامتر بر میزان مصرف انرژی مورد ارزیابی قرار گرفت. در نهایت گلخانه‌ای با 125 متر عرض، 200 متر طول، ارتفاع اواپراتور برابر 4 متر و ضریب گذردهی 0/6 که دارای آب شیرین تولیدی 161/6 مترمکعب در روز و 1/558 کیلووات ساعت بر متر مکعب مصرف انرژی می‌باشد، به عنوان گلخانه آب دریایی بهینه معرفی شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An Artificial Neural Network Approach for Modeling and Prediction of Energy Consumption in a Seawater Greenhouse

نویسندگان [English]

  • Taleb Zaree 1
  • Reza Behyad 2
1 Mechanical Engineering Department, University of Hormozgan, Bandar Abbas, Iran
2 Gas companey
چکیده [English]

Seawater greenhouse using humidification-dehumidification method can desalinate saline water and utilize fresh water for the greenhouse and drinking. Many parameters affect the performance of the seawater greenhouse. In this study, the effect of the width and length of the greenhouse, the height of the first evaporator and the roof transparency parameters on the energy consumption in the seawater greenhouse were investigated with the artificial neural network method. Artificial neural networks of the multi-layer perceptron have been used for modeling. An appropriate structure for this method was obtained and the mathematical statistics of the percent of the average absolute relative error, root mean square deviation, and square correlation coefficient were used to evaluate the network performance. The existing method is in good agreement with experimental data. Using this optimized network, the effect of each parameter on the energy consumption was evaluated. Finally, a greenhouse with a width of 125 meters, a length of 200 meters, an evaporator height of 4 meters, and a roof transparency of 0.6, which produces 161.6 m3 /day of fresh water and 1.558 kWh /m3 of energy consumption, was introduced as an optimal seawater greenhouse.

کلیدواژه‌ها [English]

  • Seawater greenhouse
  • Desalination
  • Energy consumption
  • Artificial neural network
  • Multi-Layer Perceptron (MLP)
[1] F.A. Al-Sulaiman, M.I. Zubair, M. Atif, P. Gandhi- dasan, S.A. Al-Dini, M.A. Antar, Humidification de- humidification desalination system using parabolic trough solar air collector, Applied Thermal Engineer- ing, 75 (2015) 809-816.
[2] A. Giwa, H. Fath, S.W. Hasan, Humidification–de- humidification desalination process driven by pho- tovoltaic thermal energy recovery (PV-HDH) for small-scale sustainable water and power production, Desalination, 377 (2016) 163-171.
[3] M. Zamen, S. Soufari, S.A. Vahdat, M. Amidpour, M. Zeinali, H. Izanloo, H. Aghababaie, Experimental investigation of a two-stage solar humidification–de- humidification desalination process, Desalination, 332(1) (2014) 1-6.
[4] H. Sharon, K. Reddy, A review of solar energy driven desalination technologies, Renewable and Sustainable Energy Reviews, 41 (2015) 1080-1118.
[5] M. Zamen, M. Amidpour, M.R. Firoozjaei, A novel integrated system for fresh water production in green- house: Dynamic simulation, Desalination, 322 (2013) 52-59.
[6] A.M. Al-Ismaili, H. Jayasuriya, Seawater greenhouse in Oman: A sustainable technique for freshwater con- servation and production, Renewable and Sustainable Energy Reviews, 54 (2016) 653-664.
[7] M. Goosen, S. Sablani, C. Paton, J. Perret, A. Al-Nu- aimi, I. Haffar, H. Al-Hinai, W. Shayya, Solar energy desalination for arid coastal regions: development of a humidification–dehumidification seawater green- house, Solar energy, 75(5) (2003) 413-419.
[8] P. Davies, C. Paton, The seawater greenhouse and the watermaker condenser, in: Proc. HPC2004—3rd In- ternational Conference on Heat Powered Cycles, Lar- naca, Cyprus, 2004.
[9]  J. Perret, A. Al-Ismaili, S. Sablani, Development of a humidification–dehumidification system in a quonset greenhouse for sustainable crop production in arid re- gions, Biosystems engineering, 91(3) (2005) 349-359.
[10]   B. Dawoud, Y. Zurigat, B. Klitzing, T. Aldoss, G. Theodoridis, On the possible techniques to cool the condenser of seawater greenhouses, Desalination, 195(1) (2006) 119-140.
[11]  H. Mahmoudi, S. Abdul-Wahab, M. Goosen, S. Sa- blani, J. Perret, A. Ouagued, N. Spahis, Weather data and analysis of hybrid photovoltaic–wind power gen- eration systems adapted to a seawater greenhouse desalination unit designed for arid coastal countries, Desalination, 222(1) (2008) 119-127.
[12]  T.  Tahri,  S. Abdul-Wahab, A. Bettahar, M. Douani, H. Al-Hinai, Y. Al-Mulla, Simulation of the condenser of the seawater greenhouse: part I: theoretical devel- opment, Journal of thermal analysis and calorimetry, 96(1) (2009) 35-42.
[13]  T. Tahri, M. Douani, S. Abdul-Wahab, M. Amoura, A. Bettahar, Simulation of the vapor mixture conden- sation in the condenser of seawater greenhouse using two models, Desalination, 317 (2013) 152-159.
[14]  T. Tahri, M. Douani, M. Amoura, A. Bettahar, Study of influence of operational parameters on the mass condensate flux in the condenser of seawater green- house at Muscat, Oman, Desalination and Water Treatment, 57(30) (2016) 13930-13937.
[15]   T. Zarei, R. Behyad, E. Abedini, Study on param- eters effective on the performance of a humidification- dehumidification seawater greenhouse using support vector regression, Desalination, 435 (2018) 235-245
[16]  H. Mahmoudi, N. Spahis, M.F. Goosen, S. Sablani, S.A. Abdul-wahab, N. Ghaffour, N. Drouiche, Assess- ment of wind energy to power solar brackish water greenhouse desalination units: A case study from Al- geria, Renewable and Sustainable Energy Reviews, 13(8) (2009) 2149-2155.
[17] P.J. Kumar, Multilayer Perceptron Neural Network Based Immersive VR System for Cognitive Computer Gaming, in: Progress in Advanced Computing and In- telligent Engineering, Springer, 2018, pp. 91-102.
[18]  J. Qiao, L. Wang, C. Yang, K. Gu, Adaptive Leven- berg-Marquardt Algorithm Based Echo State Network for Chaotic Time Series Prediction, IEEE Access, (2018).
[19]  E.K. Chong, S.H. Zak, An introduction to optimiza- tion, John Wiley & Sons, 2013.