تحلیل عددی شریان کرونری استنت گذاری شده: بررسی عملکرد دو استنت با جنس های منیزیمی و فولادی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو/دانشگاه تهران

2 استادیار/دانشگاه تهران

چکیده

سازه‌های کامپوزیتی مشبک به دلیل خواص منحصر بفردشان، یکی از سازه‌های پرکاربرد در صنایع هوایی، دریایی و خودروسازی می‌باشند. در دهه‌های اخیر تحقیقات زیادی برای پیش‌بینی بار بحرانی کمانش سازه‌های کامپوزیتی، بدون خرابی یا شکست انجام شده است. یکی از مهم‌ترین روش‌های غیرمخرب، روش همبستگی ارتعاشی می‌باشد. هدف تحقیق حاضر پیش‌بینی بار بحرانی کمانش ورق‌های کامپوزیتی تقویت شده با استفاده از روش همبستگی ارتعاشی می‌باشد. برای این منظور در ابتدا تحلیل ارتعاشات غیرخطی ورق‌های کامپوزیتی تقویت شده با استفاده از نرم‌افزار المان محدود آباکوس و در بارهای فشاری مختلف انجام شد. در مرحله‌ی بعد با استفاده از نتایج عددی و روش همبستگی ارتعاشی، بار بحرانی کمانش سازه مذکور پیش‌بینی گردید. در ادامه و برای صحت سنجی نتایج روش همبستگی ارتعاشی، سه ورق تقویت شده کامپوزیتی مشابه و با شرایط یکسان و با استفاده از روش با روش رشته پیچی و لایه چینی دستی ساخته شد و تحت آزمون فشار محوری قرار داده شد. در نهایت بار بحرانی کمانش تجربی به دست آمد. نتایج نشان می‌دهد که اختلاف بار بحرانی کمانش پیش‌بینی شده به روش همبستگی ارتعاشی با بار بحرانی کمانش به دست آمده از آزمایش تجربی کمتر از 5 درصد می‌باشد که این موضوع دال بر مناسب بودن روش همبستگی ارتعاشی برای پیش‌بینی بار بحرانی کمانش با دقت بسیار بالا برای ورق‌های کامپوزیتی تقویت شده می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Analysis of a Stented Coronary Artery: Investigating Function of Two Stents with Magnesium and Stainless Steel Materials

نویسندگان [English]

  • Yasin Taghizadeh 1
  • Bahman Vahidi 2
  • Babak Akbari 2
  • Shima Jalalian Sedaghati 1
1 MSc/University of Tehran
چکیده [English]

Recently, the use of coronary stents in interventional procedures has rapidly increased. Biodegradable magnesium alloy stents gained increasing interest in the past years due to their potential prospects. However, for the magnesium alloy stents to be feasible for widespread clinical use, it is important that their performance can be compared to modern permanent stents. In this research, a finite element method is used for investigating the effect of the stent geometry and material properties on    its behavior. The stent designs made with two different materials, stainless steel 304 and magnesium alloy AZ 31, and the Palmaz-Schatz geometry are modeled and their behavior during the deployment  is compared in terms of stress distribution in the stent, vessel wall, plaque as well as in terms of outer diameter changes, radial recoil ratio, axial recoil ratio, and Foreshortening. Moreover, the effect of stent material properties on the restenosis after coronary stent placement is investigated by comparing the stress distribution in the arteries. According to the findings, the possibility of restenosis after coronary stenting is lower for magnesium alloy stents in comparison with the stainless steel 304 stent.

کلیدواژه‌ها [English]

  • atherosclerosis
  • Stent implantation
  • restenosis
  • Foreshortening
  • recoil
[1] Grogan JA, Leen SB, and Mchugh PE. comparing coronary stent material performance on a common geometric platform hrough simulated bench testing. journal of the mechanical behavior of biomedical materials 12, 129-138. 2012.
[2]  Hermawan H, Dube D, and Mantovani D. developments in metallic biodegradable stents. Acta biomaterialia 6, 1693-1697. 2010.
[3]  Garg S, and Serruys PW. Coronary stents. journal of the American college of cardiology 56[10], 43- 78. 2010.
[4]  Mani G, Feldman MD, Patel D, Agrawal CM. Coronary stents: A materials perspective. Biomaterials 28, 1689-1710. 2007.
[5]  De Bock S, Iannaccone F, De Santis G, et al. Virtual evaluation of stent graft deployment: A validated modeling and simulation study. Journal of the mechanical behavior of biomedical materials 13, 129-139. 2012.
[6]  Stoeckel D, Bonsignore C, and Duda S. A survey of stent designs. Minimally Invasive Therapy & Allied Technologies 11(4), 137-147. 2002.
[7]  Baim DS,  Cutlip  DE,  Midei  M,  Linnemeier  TJ, Schreiber T, Cox D, et al. Final results of a randomized trial comparing the MULTI-LINK stent with the Palmaz-Schatz stent for narrowings in native coronary arteries. American Journal of Cardiology 87(2), 157-162. 2001.
[8]  Teo EC, Yuan Q, and Yeo JH. Design optimization of coronary stent using finite element analysis. ASAIO Journal 46(2), 201 A. 2000.
[9]  Dumoulin C, and Cochelin B. Mechanical behaviour modelling of Balloon expandable stents. Journal of Biomechanics 23(11), 1461-1470. 2000.
[10]  Chua SND, Mac Donald BJ, and Hashmi MSJ. Finite-element simulation of stent expansion. Journal of Material Processing Technology 120[1- 3], 335-340. 2002.
[11]  Chua SND, Mac Donald BJ, and Hashmi MSJ. Finite element simulation of stent and balloon interaction. Journal of Material Processing Technology ( 143- 144), 591-597. 2003.
[12]  Chua SND, Mac Donald BJ, and Hashmi MSJ. Effects of varying slotted tube (stent) geometry on its expansion behavior using finite element method. Journal of Material Processing Technology (155- 156), 1764-1771. 2004.
[13]  Wang WQ, Liang DK, Yang DZ, and Qi M. Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method. Journal of Biomechanics 39[1], 21-32. 2006.
[14]  Xia Z, Ju F, and Sasaki K. A general finite element analysis method for balloon expandable stents based on repeated unit cell (RUC) model. Finite Elements in Analysis and Design 43[8], 649-658. 2007.
[15]  Ju F, Xia Z, and Sasaki K. On the finite element modelling of Balloon expandable stents. Journal of the Mechanical Behavior of Biomedical Materials 1[1], 86-95. 2008.
[16]  Walke W, Paszenda Z, and Filipiak J. Experimental and numerical biomechanical analysis of vascular stent. Journal of Material Processing Technology (164-165), 1263-1268. 2005.
[17]  Lally C, Dolan F, and Prendergast PJ. Cardiovascular stent design and vessel stresses: a finite element analysis. Journal of Biomechanics 38[8], 1574-1581. 2005.
[18]   Wu W, Wang WQ, Yang DZ, and Qi M. Stent expansion in curved vessel and their interactions: A finite element analysis. Journal of Biomechanics 40[11], 2580-2585. 2007.
[19]   Capelli C, Gervaso F, Petrini L, Dubini G, and Migliavacca F. Assessment of tissue prolapse after balloon-expandable stenting: Influence of stent cell geometry. Medical Engineering & Physics 31[4], 441-447. 2009.
[20]   Altenbach Jo. Book review: Martin h. sadd, elasticity-theory, applications, and numerics. ZAMM-Journal    of    Applied     Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 85[12], 907-908. 2005.
[21]   Dehlaghi V, Najarian S, and Tafazzoli Shadpour M. The effect of flow divider on restenosis in stented human coronary artery with modeling. The Journal of Qazvin University of Medical Sciences 12[2], 7-12. 2008.
[22]   Gu L, Zhao S, Muttyam AK, and Hammel JM. The relation between the arterial stress and restenosis rate after coronary stenting. Journal of Medical Devices 4[3], 031005(7 pages). 2010.
[23]   Serruys PW, and Kutryk MJ B. Handbook of coronary stents. Third Edition, London: Martin Dunitz Ltd, 2000.
[24]   Green AE, and Zerna W. Theoretical elasticity. Oxford: Clarendon Press, 1968.
[25]   Kastrati A, Dirschinger J, Boekstegers P, Elezi S, Schuhlen H, Pache J, et al. Influence of stent design on 1-year outcome after coronary stent placement: A randomized comparison of five stent types in 1147 unselected patients. Catheterization and Cardiovascular Interventions50[3], 290-297. 2000.
[26]   de Weert TT, TOuhlous M, Zondervan PE, Hendriks JM, Dippel DW, van Sambeek MR, et al. In vitro characterization of atherosclerotic carotid plaque with multidetector computed tomography and histopathological correlation. European Radiology 15[9], 1906-14. 2005.
[27] Lee RT, Grodzinsky AJ, Frank EH, Kamm RD, and Schoen FJ. Structure- dependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques. Circulation 83[5], 1764-70. 1991.
[28]   Pericevic I, Lally C, Toner D, and Kelly DJ. The influence of plaque composition on underlying arterial wall stress during stent expansion: The case of lesion-specific stents. Medical Engineering & Physics 31[4], 428-433. 2009.
[29]   Loree HM, Grodzinsky AJ, Park SY, Gibson LJ, and Lee RT. Static and circumferential tangential modulus of human atherosclerotic tissue. J Biomech 27, 195-204. 1994.
[30]   Salunke NV, Topoleski LDT, Humphrey JD, and Mergner WJ. Compressive stress-relaxation of human atherosclerotic plaque. J Biomed Mater Res 55, 236-41. 2001.
[31]   Holzapfel GA, Stadler M, Gasser TC. Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. ASME J Biomech Eng 127, 166-80. 2005.
[32]   Holzapfel GA, Sommer G, and Regitnig P. Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J Biomech Eng 126[5], 657-65. 2004.
[33]   Lally C, Reid AJ, and Prendergast PJ. Elastic behaviour of porcine coronary artery tissue under uniaxial and equibiaxial tension. Ann Biomed Eng 32, 1355-64. 2004.
[34]   Maurel W, Wu Y, Magnenat N, and Thalmann D. Biomechanical models for soft tissue simulation. Berlin: Springer, 1998.
[35]   Rogers C, Tseng DY, Squire JC, et al. Balloon- artery interactions during stent placement: a finite element analysis approach to pressure, compliance, and stent design as contributors to vascular injury. Circulation 84, 378-383. 1999.
[36]   Baim DS, Cutlip DE, O’Shaughnessy CD, Hermiller JB, Kereiakes DJ, Giambartolomei A, et al. Final results of a randomized trial comparing the NIR stent to the Palmaz-Schatz stent for narrowings in native coronary arteries. The American Journal of Cardiology 87[2], 152-156. 2001.
[37]  Colombo A, Stankovic G, and Moses JW. Selection of coronary stents. J Am Coll Cardiol 40, 1021-33. 2002.
[38]  Nair A,  Kuban  BD,  Tuzcu  EM,  Schoenhagen  P, Nissen SE, and Vince DG. Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation 106, 2200-6. 2002.
[39] Altenbach Jo. Book review: Martin h. sadd, elasticity – theory, applications, and numerics. ZAMM - Journal  of  Applied  Mathematics  and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 85[12], 907–908. 2005.