[1] Kalogirou, S.A.; Panteliou, S.; Dentsoras, A.; “Artificial neural-networks used for the performance prediction of a thermosiphon solar water heater”,Renewable Energy, vol. 18, no. 1-2, pp. 87-99, 1999.
[2] Chow, T.T.; Zhang, G.Q.; Lin, Z.; Song. C.L.; “Global optimization of absorption chiller system by genetic algorithm and neural network”, Energy and Building, vol. 34, no. 1, pp. 103-109, 2002.
[3] Kalogirou, S.A.; Panteliou, S.; Dentsoras, A.; “Modeling of solar domestic water heating systems using artificial neural-networks”, Solar Energy, vol.65, no. 6, pp. 335-342, 1999.
[4] Kalogirou, S.A.; Neocleous, C.S.; Schizas, C.N.;“Artificial neural networks for modeling the startingup of a solar steam-generator”, vol. 60, no. 2, pp. 89-100, 1998.
[5] Kalogirou, S.A.; Bojic, M.; “Artificial neural- networks for the prediction of the energy consumption of a passive solar building”, Energy,vol. 25, no. 5, pp. 479-491, 2000.
[6] Pacheco-Vega, A.; Sen, M.; Yang, K.T.; McClain, R.L.; “Neural network analysis of a fin-tube refrigerating heat exchanger with limited experimental data”, Int. J. Heat and Mass Transfer, vol. 44, no. 9, pp. 763-770, 2001.
[7] Palau, A.; Velo, E.; Puigjaner, L.; “Use of neural networks and expert systems to control a gas/solid sorption chilling machine”, Internatioal Journal of Refrigeration, vol. 22, no. 1, pp. 59-66, 1999.
[8] Chouai, A.; Laugier, S.; Richon; D; “Modeling of thermodynamic properties using neural networks: application to refrigerants”, Fluid Phase Equilibria, vol. 199, no. 1, pp. 53-62, 2002.
[9] Sharma, R.; Singhal, D.; Ghosh, R.; Dwivedi, A.; “Potential applications of artificial neural networks to Thermodynamics: vapor–liquid equilibrium predictions”, Computers and Chemical Engineering, vol. 22, no. 3, pp. 385-390, 1999.
[10] Bechtler, H.; Browne, M.W.; Bansal, P.K.; Kecman, V.; “New approach to dynamic modeling of vapour compression liquid chillers: artificial neural-networks”, Applied Thermal Engineering, vol. 21, no. 9, pp. 941-953, 2001.
[11] Sencan, A.; Soteris, Kalogirou, S.A.; “A new approach using artificial neural networks fordetermination of the thermodynamic properties of fluid couples”, Energy Conversion and Management, vol. 46, no. 15-16, pp. 2405-2418, 2005.
[12] Sencan, A.; Kemal, A.; Yakuta, B.; Soteris, A.; Kalogiroub, H.; “Thermodynamic analysis of absorption systems using artificial neural network”, Renewable Energy, vol. 31, no. 1, pp. 29-43, 2006.
[13] Sencan, A.; “Artificial intelligent methods for thermodynamic evaluation of ammonia–water refrigeration systems”, Energy Conversion and Management, vol. 47, no. 18-19, pp. 3319-3332, 2006.
[14] Kaita, Y.; “Thermodynamic properties of lithium bromide-water solution at high temperatures”, International Journal of refrigeration, vol. 24, no. 5, pp. 374-390, 2001.
[15] Sozen, A.; Arcaklioglu, E.; oozalp, M.; “Formulation based on artificial neural network of thermodynamic properties of ozone friendly refrigerant/absorbent couples”, Applied Thermal Engineering, vol. 25, no. 11-12, pp. 1808-1820, 2005.
[16] Florides, G.A.; Kalogirou, S.A.; Tassou, S.A.; Wrobel, L.C.; “Design and construction of a LiBr–water absorption machine”, Energy Conversion and Management, vol. 44, no. 15, pp. 2483-2508, 2003.
[17] Hagan, M.T.; Menhaj, M.; “Training feedforward networks with the marquardt algorithm”, IEEE Transactions on Neural Network, vol. 5, no. 6, pp. 989-993, 1994.
[18] Haykin, S.; Neural Networks: A Comprehensive Foundation, Prentice Hall, 1999.