کنترل نانو عملگر پیزوالکتریک با استفاده از تئوری فلکسوالکتریک وابسته به اندازه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه شهرکرد، شهرکرد، ایران

2 عضو هیأت علمی دانشگاه شهرکرد، دانشکده فنی و مهندسی، گروه مهندسی مکانیک

3 دانشکده فنی و مهندسی، گروه مهندسی مکانیک، دانشگاه شهرکرد، شهرکرد، ایران

چکیده

در این مقاله برای اولین بار از کنترل پسخورد و کنترل فازی به منظور ردگیری مسیر دلخواه انتهای یک نانوتیر طرهای پیزوالکتریک به عنوان یک نانو عملگر استفاده شده است. معادالت حرکت بشکل معادالت دیفرانسیل با مشتقات پارهایی به کمک تئوری فلکسوالکتریک مرتبه باال وابسته به اندازه استخراج گردیده است. به منظور دستیابی به معادالت حاکم، فرموالسیون غیرخطی برای نانوتیر اویلر-برنولی پیزوالکتریک با درنظر گرفتن غیرخطی گری فون-کارمن به کارگرفته شده است. معادالت غیر خطی به کمک حساب تغییرات و اصل همیلتون بدست آمده است. برای تبدیل معادالت دیفرانسیل پارهایی به معادالت دیفرانسیل معمولی روش گسسته سازی گلرکین پیاده سازی شده است. با استفاده از متغیرهای فضای حالت، مدل فضای حالت نانوتیر برای طراحی کنترلکننده مناسب بدست آورده شده است. سپس طراحی کنترل پسخورد حالت بدون انتگرالگیر، کنترل پسخورد حالت با انتگرال گیر و کنترلر فازی برای کنترل انتهای نانوعمل گر به منظور ردگیری مسیر دلخواه صورت پذیرفته است. در پایان اثر ورودی های متفاوت )سینوسی و پله( به همراه اغتشاش )ضربه( برروی کنترلرهای طراحی شده با استفاده از شبیه سازی کامپیوتری شرح داده شده است. با توجه به یافته های این مقاله می توان بیان نمود که به ترتیب کنترلر فازی، کنترلر پسخورد حالت با انتگرال گیر و کنترلر پسخورد حالت بدون انتگرالگیر بهترین عملکرد را داشته اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Control of a Piezoelectric Nano-Actuator based on Flexoelectric Size-Dependent Theory

نویسندگان [English]

  • Hossein Vaghefpour 1
  • Hadi Arvin 2
  • Yaghoob Tadi Bani 3
1 Department of Mechanical Engineering, Faculty of Engineering, Shahrekord University , Shahrekord, Iran.
2 Department of Mechanical Engineering, Faculty of Engineering, Shahrekord University
3 Department of Mechanical Engineering, Faculty of Engineering, Shahrekord University , Shahrekord, Iran
چکیده [English]

In this paper, for the first time feedback control algorithms and fuzzy control are implemented for tip tracking control of a piezoelectric size-dependent cantilever nanobeam as a nanoactuator to a desired path. The governing partial differential equation of motion is obtained based on a size-dependent high-order flexoelectric theory. The equations of motion for an isotropic piezoelectric Euler-Bernoulli nanobeam are derived based on the von-Karman geometric nonlinearity besides employing the Hamilton’s principle and variational approach. In order to reduce the governing partial differential equations into a set of ordinary differential equations the Galerkin projection method is implemented. By introducing a new set of variables, the state space model of nanobeam is derived. The state feedback, integral state feedback and fuzzy control algorithms are employed to achieve a desired output for tip tracking. Regarding to the findings of this paper, it can be concluded that the fuzzy controller, integral state feedback and state feedback controller have the best performance in that order.

کلیدواژه‌ها [English]

  • Piezoelectric nanobeam
  • Scale flexoelectric theory
  • feedback control
  • fuzzy control
[1] Craighead, H. G. "Nanoelectromechanical systems," Science 290(5496), 1532-1535 (2000).
[2] Janphuang, P. Lockhart, R. Uffer, N. Briand, D. De Rooij, N.F. "Vibrational piezoelectric energy harvesters based on thinned bulk PZT sheets fabricated at the wafer level," Sensors and Actuators A : Physical 210 1-9 (2014).
 [3] Park, S. K. and Gao, X. L. "Bernoulli-Euler beam model based on a modified couple stress theory," Journal of Micromechanics and Microengineering 16(11), 2355-2359 (2006).
 [4]  Wang, Z. L. "Piezoelectric nanogenerator based on zinc oxide nanowire arrays," Science 312, 242-246 (2006).
 [5] Lazarus, A., Thomas, O. and Deü, J.-F. "Finite Element Reduced Order Models for Nonlinear Vibrations of Piezoelectric Layered Beams with Applications to NEMS," Finite Elements in Analysis and Design, 49, 35-51 (2012).
 [6] Majdoub, M. S., Sharma, P. and Cagin, T. "Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoeletric effect," Phys. Rev. B 77(125424), 1-9 (2008).
 [7] Casadei, F., Dozio, L., Ruzzene, M. and Cunefare, K. A. "Periodic Shunted Arrays for the Control of Noise Radiation in an Enclosure," Journal of Sound and Vibration 329, 3632-3646 (2010).
 [8] Al-ashtari, W. Hunstig, M. Hemsel, T. Sextro, W. "Enhanced energy harvesting using multiple piezoelectric elements: Theory and experiments," Sensors Actuators A. Phys. 200 138-146 (2013).
 [9] VettigerP, Despont M, Drechsler U, et al. The ‘‘Millipede’’ – more than thousand tips for future AFM storage. IBM J Res Dev 2000;44(3):323–40. [10]  Wu, T., "Modeling and Design of a Novel Cooling Device for Microelectronics Using Piezoelectric Resonating Beams," Ph. D. Dissertation, Departmentof Mechanical and Aerospace Engineering, NC State University, Raleigh, U.S.A. (2003).
[11] Hao, Z. and Liao, B., "An Analytical Study on Interfacial Dissipation in Piezoelectric Rectangular Block Resonators with In-Plane Longitudinal-Mode Vibrations," Sensors and Actuators A: Physical, 163, 401-409 (2010).
 [12] Wang ZL. ZnO "nanowire and nanobelt platform for nanotechnology". Mater Sci.Eng R, 64, 33-71 (2009).
 [13]  Park KI, Xu S, Liu Y, Hwang GT, Kang SJ, Wang ZL, et al. "Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Letters" 10, 4939-4943 (2010).
 [14] Xu S, Wang ZL. "One-dimensional ZnO nanostructures: solution growth and functional properties (invited review) nano research," 10, 160-167 (2011).
[15] Tanner SM, Gray JM, Rogers CT, Bertness KA, Sanford NA. "High-Q GaN nanowire resonators and oscillators," Appl Phys Lett, 91, 203117 (2007).
 [16] Fei P, Yeh PH, Zhou J, Xu S, Gao YF, Song JH, et al. "Piezoelectric potential gated field-effect transistor based on a free-standing ZnO wire" Nano Letters 9, 3435-3439 (2009).
 [17] He JH, Hsin CL, Liu J, Chen LJ, Wang ZL. "Piezoelectric gated diode of a single ZnO nanowire" Adv Mater, 19, 781-784 (2007).
 [18] Wang Q, Li QH, Chen YJ, Wang TH, He XL, Li JP, et al. "Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors" Appl Phys Lett 84,3654-3656 (2004).
 [19] Tzou, H.S., "Piezoelectric Shells: Distributed Sensing and Control of Continua" Kluwer, Dordrecht, (1993).
 [20] ZHENG, B., YANG, J. "Vibration analysis of base structure on SINS using PZT actuators", Turk. J. Elec. Eng. & Comp. Sci., Vol.20, No.6, (2012).
 [21] Yang, J.S., "The Mechanics of Piezoelectric Structures" World Scientific, Singapore (2006).
 [22] Yang, J.S.,Zhang,W.,"A thickness hear high voltage piezoelectric transformer" Int. J. Appl. Electromagn. Mech, 21(2),131-141 (1999).
 [23] Yang, J. S., Fang, H. Y., Jiang, Q., "Analysis of a ceramic bimorph piezoelectric gyroscope". Int. J. Appl. Electromagn, Mech,10(6),459-473 (1999).
 [24] Yang, J. S., "Equations for the extension and flexure of a piezoelectric beam with rectangular cross section and applications" Int. J. Appl. Electromagn. Mech, 9(4), 409-420 (1998).
 [25] Yang, J., Xiang, H. J., "Thermo-electro-mechanical characteristics of functionally graded piezoelectric actuators" Smart Mater. Struct, 16 (3), 784-797 (2007).
 [26] Yong Z, Timo R. N, Gang X, Shi L and Hongbo Z, "Analysis of finite deformation of curved beams bonded with piezoelectric actuating layers" J. Intell. Mater. Syst. Struct, 13 (1), 1-12 (2016).
 [27] Wang, Q., Quek, S. T., "A model for the analysis of beams with embedded piezoelectric layers" J. Intell. Mater. Syst. Struct, 13 (1), 61-70 (2002).
 [28] Wang, Q., Quek, S. T., "Flexural vibration analysis of sandwich beam coupled with piezoelectric actuator" Smart Mater. Struct, 9(1), 103-109 (2012).
 [29] Zeighampour, H. and Tadi Beni, Y., "Size-dependent vibration of fluid-conveying double-walled carbon nanotubes using couple stress shell theory," Physica E, 61, 28-39 (2014).
[30] Zeighampour, H. and Tadi Beni, Y., "Analysis of conical shells in the framework of coupled stresses theory," Internaional Journal of Engineering Scince, 81, 107-122 (2014).
 [31] Zeverdejani, M. K. and Tadi Beni, Y., "The nano scale vibration of protein microtubules based on modified strain gradient theory," Current Applied Physics, 13, 1566-1571 (2014).
 [32] Ke, L., Wang, Y. and Wang, Z. (2012), "Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal
theory", Comp. Struct., 94, 2038-2047.
 [33] Ansari, R., Mohammadi, V., Faghih Shojaei, M., Gholami, R. and Sahmani, S., "Post buckling characteristics of nanobeams based on the surface elasticity theory," Composite Part B: Engineering, 55, 240-246 (2013).
[34] Cady, W.G., "Piezoelectricity: An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals," new rev. ed., vol. 2. Dover, New York (1964).
 [35] Mishima, T., Fujioka, H., Nagakari, S., Kamigake, K., Nambu, S., "Lattice image observations of anoscale ordered regions in Pb (Mg1/3Nb2/3)O-3" Jpn. J. Appl. Phys, 36, 6141-6144 (1997).
 [36] Cross, L.E., "Flexoelectric effects: charge separation in insulating solids subjected to elastic strain gradients" J. Mater. Sci, 41, 53-63 (2006).
 [37] Baskaran, S., He, X., Chen, Q., Fu, J.F., "Experimental studies on the direct flexoelectric effect in a phase polyvinylidene fluoride films" Appl. Phys. Lett, 98, 242901 (2011).
 [38] Catalan, G., Lubk, A., Vlooswijk, A.H.G., Snoeck, E., Magen, C., Janssens, A., Rispens, G., Rijnders, G., Blank, D.H.A., Noheda, B., "Flexoelectric rotation of polarization in ferroelectric thin films" Nat. Mater, 10, 963-967 (2011).
 [39] Wang, G.-F., Yu, S.-W., Feng, X.-Q., "A piezoelectric constitutive theory with rotation gradient effects" Eur. J. Mech. A Solid, 23, 455-466 (2004).
 [40] Hadjesfandiari, A. R., "Size-dependent piezoelectricity," International Journal of Solids and Structures, 50, 2781-2791 (2013).
 [41] Maranganti, R., Sharma, N. D. and Sharma, P., "Electromechanical coupling in nonpiezoelectri materials due to nanoscale nonlocal size effects: Green’s function solutions and embedded inclusions," Physical Review B, 74, 14110-1-14110-14 (2006).
 [42] Yan, Z. and Jiang, L., "Size-dependent bending and vibration behavior of piezoelectric nanobeams due to flexoelectricity," Journal of Physics D: Applied Physics, 46, 355502-1-355502-7 (2013).
 [43] Hadjesfandiari, A. R. and Dargush, F. G., "Couple stress theory for solids," International Journal of Solids and Structures, 48, 2496-2510 (2011).
 [44] Beni, Y. T.,"Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally gradedpiezoelectric nanobeams" J. Intell. Mater. Syst. Struct, 13 (1), 1-17 (2016).
 [45] Wang,P. K. C., "Feedback control of vibrations in mircomachined cantileverbeam with electrostatic actuators," Journal of Sound and Vibration 213(3) 537-550 (1998).
 [46] Alsaleem,F. M., Younis,M. I., "Stabilization of electrostatic MEMS resonators using a delayed feedback controller," Smart Materials and Structures 19(3)
[47] Alsaleem, F. M.,Younis,M. I., "Integrity analysis of electrically actuated resonators with delayed feedback controller," Journal of Dynamics System, Measurement, and Control-Transactions of the ASME 133(3)031011-1-051003-8 (2011).
 [48] Shao,S., Masri,K. M., Younis,M. I., "The effect of time-delayed feedback controller on an electrically actuated resonator," Nonlinear Dynamics 74 , 257-270 (2013).
 [49] Siewe, U. H. Hegazy, "Homoclinic bifurcation and chaos control in MEMS resonators," Applied Mathematical Modelling 35, 5533-5552 (2011).
 [50]  Seleim, A., Towfighian, S., Delande,E., Abdel-Rahman,E., Heppler,G., "Dynamics of a close-loop controlled MEMS resonator", Nonlinear Dynamics 69, 615-633 (2012).
 [51] Vatankhah, R., Najafi, A., Salarieh, H., Alasty, A., "Boundary stabilization of non-classical micro-scale beams" Applied Mathematical Modelling 37, 8709-8724 (2013).
 [52] Quoc C. N., Slava K., "Nonlinear tracking control of vibration amplitude for a parametrically excited microcantilever beam", Journal of Sound and Vibration 338, 91-104 (2015).
[53]Komijani M., J.N.Reddy , M.R.Eslami “Nonlinear analysis of microstructure-dependent functionally graded piezoelectric material actuators” Journal of the Mechanics and PhysicsofSolids63(2014)214–227.
[54]A. Jandaghian O. Rahmani,” An analytical solution for free vibration of piezoelectric nanobeam based on a nonlocal elasticity theory” Journal of Mechanics, Vol. 32, No. 2, April 2016.