[1] H. Ashley, G. Haviland, Bending vibrations of a pipe line containing flowing fluid, Journal of Applied Mechanics-Transactions of the ASME, 17(3) (1950) 229-232.
[2] T.B. Benjamin, Dynamics of a system of articulated pipes conveying fluid-I. Theory, Proc. R. Soc. Lond. A, 261(1307) (1962) 457-486.
[3] M.P. Paidoussis, Fluid-structure interactions: slender structures and axial flow, Academic press, 1998.
[4] M. Paidoussis, Dynamics of tubular cantilevers conveying fluid, Journal of Mechanical Engineering Science, 12(2) (1970) 85-103.
[5] A.A. Bhirde, V. Patel, J. Gavard, G. Zhang, A.A. Sousa, A. Masedunskas, R.D. Leapman, R. Weigert, J.S. Gutkind, J.F. Rusling, Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery, ACS nano, 3(2) (2009) 307-316.
[6] W. Xia, L. Wang, Microfluid-induced vibration and stability of structures modeled as microscale pipes conveying fluid based on non-classical Timoshenko beam theory, Microfluidics and Nanofluidics, 9(4-5) (2010) 955-962.
[7] L.-L. Ke, Y.-S. Wang, Flow-induced vibration and instability of embedded double-walled carbon nanotubes based on a modified couple stress theory, Physica E: Low-dimensional Systems and Nanostructures, 43(5) (2011) 1031-1039.
[8] T.-Z. Yang, S. Ji, X.-D. Yang, B. Fang, Microfluid-induced nonlinear free vibration of microtubes, International Journal of Engineering Science, 76 (2014) 47-55.
[9] M. Mohammadimehr, A. Mohammadi-Dehabadi, Z.K. Maraghi, The effect of non-local higher order stress to predict the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow, Physica B: Condensed Matter, 510 (2017) 48-59.
[10] A.W. McFarland, J.S. Colton, Role of material microstructure in plate stiffness with relevance to microcantilever sensors, Journal of Micromechanics and Microengineering, 15(5) (2005) 1060.
[11] R.D. Mindlin, Micro-structure in linear elasticity, Archive for Rational Mechanics and Analysis, 16(1) (1964) 51-78.
[12] F. Yang, A. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures, 39(10) (2002) 2731-2743.
[13] S. Park, X. Gao, Bernoulli–Euler beam model based on a modified couple stress theory, Journal of Micromechanics and Microengineering, 16(11) (2006) 2355.
[14] L. Wang, Size-dependent vibration characteristics of fluid-conveying microtubes, Journal of Fluids and Structures, 26(4) (2010) 675-684.
[15] R. Bahaadini, A.R. Saidi, M. Hosseini, On dynamics of nanotubes conveying nanoflow, International Journal of Engineering Science, 123 (2018) 181-196.
[16] S. Ahangar, G. Rezazadeh, R. Shabani, G. Ahmadi, A. Toloei, On the stability of a microbeam conveying fluid considering modified couple stress theory, International Journal of Mechanics and Materials in Design, 7(4) (2011) 327.
[17] R. Ansari, R. Gholami, A. Norouzzadeh, S. Sahmani, Size-dependent vibration and instability of fluid-conveying functionally graded microshells based on the modified couple stress theory, Microfluidics and nanofluidics, 19(3) (2015) 509-522.
[18] H. Zeighampour, Y.T. Beni, Size-dependent vibration of fluid-conveying double-walled carbon nanotubes using couple stress shell theory, Physica E: Low-dimensional Systems and Nanostructures, 61 (2014) 28-39.
[19] A.G. Arani, M. Bagheri, R. Kolahchi, Z.K. Maraghi, Nonlinear vibration and instability of fluid-conveying DWBNNT embedded in a visco-Pasternak medium using modified couple stress theory, Journal of Mechanical Science and Technology, 27(9) (2013) 2645-2658.
[20] A.C. Eringen, D. Edelen, On nonlocal elasticity, International Journal of Engineering Science, 10(3) (1972) 233-248.
[21] R. Bahaadini, M. Hosseini, Nonlocal divergence and flutter instability analysis of embedded fluid-conveying carbon nanotube under magnetic field, Microfluidics and Nanofluidics, 20(7) (2016) 108.
[22] M. Hosseini, R. Bahaadini, Size dependent stability analysis of cantilever micro-pipes conveying fluid based on modified strain gradient theory, International Journal of Engineering Science, 101 (2016) 1-13.
[23] L. Yin, Q. Qian, L. Wang, Strain gradient beam model for dynamics of microscale pipes conveying fluid, Applied Mathematical Modelling, 35(6) (2011) 2864-2873.
[24] I. Lottati, A. Kornecki, The effect of an elastic foundation and of dissipative forces on the stability of fluid-conveying pipes, Journal of Sound Vibration, 109 (1986) 327-338.
[25] P. Djondjorov, V. Vassilev, V. Dzhupanov, Dynamic stability of fluid conveying cantilevered pipes on elastic foundations, in, Academic Press, 2001.
[26] J. Yoon, C. Ru, A. Mioduchowski, Flow-induced flutter instability of cantilever carbon nanotubes, International Journal of Solids and Structures, 43(11-12) (2006) 3337-3349.
[27] A.M. Dehrouyeh-Semnani, M. Nikkhah-Bahrami, M.R.H. Yazdi, On nonlinear vibrations of micropipes conveying fluid, International Journal of Engineering Science, 117 (2017) 20-33.
[28] A.E. Mamaghani, S. Khadem, S. Bab, Vibration control of a pipe conveying fluid under external periodic excitation using a nonlinear energy sink, Nonlinear Dynamics, 86(3) (2016) 1761-1795.
[29] A.E. Mamaghani, S.E. Khadem, S. Bab, S.M. Pourkiaee, Irreversible passive energy transfer of an immersed beam subjected to a sinusoidal flow via local nonlinear attachment, International Journal of Mechanical Sciences, 138 (2018) 427-447.
[30] R. Hosseini, M. Hamedi, A. Ebrahimi Mamaghani, H.C. Kim, J. Kim, J. Dayou, Parameter identification of partially covered piezoelectric cantilever power scavenger based on the coupled distributed parameter solution, International Journal of Smart and Nano Materials, 8(2-3) (2017) 110-124.
[31] M.A. Khorshidi, The material length scale parameter used in couple stress theories is not a material constant, International Journal of Engineering Science, 133 (2018) 15-25.