[1] A.E. Bergles, Enhancement of pool boiling, International journal of refrigeration, 20(8) (1997) 545-551.
[2] S.U. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, Argonne National Lab., IL (United States), 1995.
[3] M. Shi, M. Shuai, Z. Chen, Q. Li, Y.-M. Xuan, Study on pool boiling heat transfer of nano-particle suspensions on plate surface, Journal of Enhanced Heat Transfer, 14(3) (2007).
[4] J. Tu, N. Dinh, T. Theofanous, An experimental study of nanofluid boiling heat transfer, in: Proceedings of 6th international symposium on heat transfer, Beijing, China, Beijing,china, 2004.
[5] S. Vafaei, Nanofluid pool boiling heat transfer phenomenon, Powder Technology, 277 (2015) 181-192.
[6] P. Vassallo, R. Kumar, S. D’Amico, Pool boiling heat transfer experiments in silica–water nano-fluids, International Journal of Heat and Mass Transfer, 47(2) (2004) 407-411.
[7] V. Umesh, B. Raja, A study on nucleate boiling heat transfer characteristics of pentane and CuO-pentane nanofluid on smooth and milled surfaces, Experimental Thermal and Fluid Science, 64 (2015) 23-29.
[8] A. Das, P. Das, P. Saha, Nucleate boiling of water from plain and structured surfaces, Experimental Thermal and Fluid Science, 31(8) (2007) 967-977.
[9] A. Das, P. Das, P. Saha, Performance of different structured surfaces in nucleate pool boiling, Applied Thermal Engineering, 29(17-18) (2009) 3643-3653.
S.K. Das, G.P. Narayan, A.K. Baby, Survey on nucleate pool boiling of nanofluids: the effect of particle size relative to roughness, Journal of Nanoparticle Research 10(7) (2008) 1099-1108.
[11] R. Pastuszko, M. Piasecka, Pool boiling on surfaces with mini-fins and micro-cavities, in: Journal of Physics: Conference Series, IOP Publishing, 2012, pp. 012137.
[12] M. Dadjoo, N. Etesami, M.N. Esfahany, Influence of orientation and roughness of heater surface on critical heat flux and pool boiling heat transfer coefficient of nanofluid, Applied Thermal Engineering, 124 (2017) 353-361.
[13] J.H. Lee, T. Lee, Y.H. Jeong, Experimental study on the pool boiling CHF enhancement using magnetite- water nanofluids, International Journal of Heat and Mass Transfer, 55(9-10) (2012) 2656-2663.
[14] A. Abdollahi, M.R. Salimpour, N. Etesami, Experimental analysis of pool boiling heat transfer of ferrofluid on surfaces deposited with nanofluid,Modares Mechanical Engineering, 16(2) (2016)19-30.
[15] M. Sheikhbahai, M.N. Esfahany, N. Etesami, Experimental investigation of pool boiling of Fe3O4/ ethylene glycol–water nanofluid in electric field, International Journal of Thermal Sciences, 62 (2012) 149-153.
[16] L. Junhong, G. Jianming, L. Zhiwei, L. Hui, Experiments and mechanism analysis of pool boiling heat transfer enhancement with water-based magnetic fluid, Heat and mass transfer, 41(2) (2004) 170-175.
[17] M. Takahashi, A. Inoue, T. Kaneko, Pool boiling heat transfer of mercury in the presence of a strong magnetic field, Experimental thermal and fluid science, 8(1) (1994) 67-78.
[18] S. Wu, D. Zhu, X. Li, H. Li, J. Lei, Thermal energy storage behavior of Al2O3–H2O nanofluids, Thermochimica Acta, 483(1-2) (2009) 73-77.
[19] Holman, Experimental methods for engineers, (2012) 63-72. D. Wen, Y. Ding, Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids, Journal of Nanoparticle Research, 7(2-3) (2005) 265-274.