[1] J.M. Jani, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities, Materials & Design, 56 (2014) 1078-1113.
[2] A. Damanpack, M. Bodaghi, M. Aghdam, M. Shakeri, On the vibration control capability of shape memory alloy composite beams, Composite Structures, 110 (2014) 325-334.
[3] C.A. Rogers, Active vibration and structural acoustic control of shape memory alloy hybrid composites: experimental results, The Journal of the Acoustical Society of America, 88(6) (1990) 2803-2811.
[4] A. Baz, K. Imam, J. McCoy, Active vibration control of flexible beams using shape memory actuators, Journal of Sound and Vibration, 140(3) (1990) 437-456.
[5] S. Seelecke, I. Muller, Shape memory alloy actuators in smart structures: Modeling and simulation, Applied Mechanics Reviews, 57(1) (2004) 23-46.
[6] W.J. Buehler, J. Gilfrich, R. Wiley, Effect of low‐temperature phase changes on the mechanical properties of alloys near composition TiNi, Journal of applied physics, 34(5) (1963) 1475-1477.
[7] G.B. Kauffman, I. Mayo, The story of nitinol: the serendipitous discovery of the memory metal and its applications, The chemical educator, 2(2) (1997) 1-21.
[8] K. Tanaka, A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior, (1986).
[9] C. Liang, C.A. Rogers, One-dimensional thermomechanical constitutive relations for shape memory materials, Journal of intelligent material systems and structures, 8(4) (1997) 285-302.
[10] L.C. Brinson, One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable, Journal of intelligent material systems and structures, 4(2) (1993) 229-242.
[11] K.-t. Lau, Vibration characteristics of SMA composite beams with different boundary conditions, Materials & design, 23(8) (2002) 741-749.
[12] K.-t. Lau, L.-m. Zhou, X.-m. Tao, Control of natural frequencies of a clamped–clamped composite beam with embedded shape memory alloy wires, Composite Structures, 58(1) (2002) 39-47.
[13] M.M. Barzegari, M. Dardel, A. Fathi, Vibration analysis of a beam with embedded shape memory alloy wires, Acta Mechanica Solida Sinica, 26(5) (2013) 536-550.
[14] S.-Y. Oh, L. Librescu, O. Song, Thermoelastic modeling and vibration of functionally graded thin-walled rotating blades, AIAA journal, 41(10) (2003) 2051-2061.
[15] L. Librescu, S.-Y. Oh, O. Song, Thin-walled beams made of functionally graded materials and operating in a high temperature environment: vibration and stability, Journal of Thermal Stresses, 28(6-7) (2005) 649-712.
[16] S.A. Fazelzadeh, M. Hosseini, Aerothermoelastic behavior of supersonic rotating thin-walled beams made of functionally graded materials, Journal of fluids and structures, 23(8) (2007) 1251-1264.
[17] M. Naghmehsanj, B. Rahmani, Optimal control of supersonic pre‐twisted rotating functionally graded thin‐walled blades, Structural Control and Health Monitoring, 24(8) (2017).
[18] V. Birman, D.A. Saravanos, D.A. Hopkins, Micromechanics of composites with shape memory alloy fibers in uniform thermal fields, AIAA journal, 34(9) (1996) 1905-1912.
[19] N.K. Chandiramani, C.D. Shete, L.I. Librescu, Vibration of higher-order-shearable pretwisted rotating composite blades, International Journal of Mechanical Sciences, 45(12) (2003) 2017-2041.
[20] S. Fazelzadeh, P. Malekzadeh, P. Zahedinejad, M. Hosseini, Vibration analysis of functionally graded thin-walled rotating blades under high temperature supersonic flow using the differential quadrature method, Journal of sound and vibration, 306(1) (2007) 333-348.
[21] M. Crespo-Ballesteros, M. Antoniou, M. Cherniakov, Wind Turbine Blade Radar Signatures in the Near Field: Modeling and Experimental Confirmation, IEEE Transactions on Aerospace and Electronic Systems, 53(4) (2017) 1916-1931.