[1] Y.B. Kazakov, N.A. Morozov, S.A. Nesterov, Nesterov calculation of force-velocity relationship of electromechanical magnetorheological fluid damper, Vestnik IGEU, 11(4) (2015) 17–22.
[2] J. Rabinow, The magnetic fluid clutch, Transactions of the American Institute of Electrical Engineers,67(2)(1948) 1308–1315.
[3] Jr.B.F. Spencer, S. J. Dyke, M.K. Sain, J.D. Carlson, Phenomenological model for a magnetorheological damper. ASCE J. Eng. Mech., 123(3) (1997) 230–238.
[4] D. Case, B. Taheri, E. Richer, Dynamic magnetorheological damper for orthotic tremor suppression, Biomed. Eng. Technol. 12 (2) (2011) 1218.
[5] A. Rodriguez, F. Ikhouane, J. Rodellar, N. Luo, Modeling and identification of a small-scale magnetorheological damper. J Intell Mater Syst Struct, 20(7) (2009) 825–835.
[7] H. Xu, I. Qin, H. Clauberg, B. Chylak, V.L. Acoff, Behavior of palladium and its impact on intermetallic growth in palladium-coated cu wire bonding, Acta Mater. 61(1) (2013) 79–88.
[8] D.R. Gamota, F.E. Filisko, Dynamic mechanical studies of electro rheological materials: moderate frequencies, J. Rheol. 35(3) (1991) 399–425.
[9] R. Stanway, J.L. Sproston, N.G. Stevens, Non-linear modelling of an electro-rheological vibration damper, J. Electro stat. 20 (2) (1987) 167–84.
[10] Y.F.Liu, J. Li, Z. M. Zhang, X. H. Hu, W. Zhang, Wxperimental comparison of five friction models on the same test-bed of the micro stick-slip motion system, J. Mech. Sci., 32(6) (2015) 15-28.
[11] S.B. Choi, S.K. Lee, A hysteresis model for the fielddependent damping force of a magneto rheological damper. Journal of Sound and Vibration, 245(2) (2001) 375-383.
[12] D.H. Wang, W.H. Liao, Modeling and control of magneto rheological fluid dampers using neural networks, Smart Materials and Structures, 14(1) (2005) 111-126.
[13] M. Sugeno, G.T. Kang, Structure identification of fuzzy model, Fuzzy Sets and Systems, 28(1) (1988) 15-33.
[14] F. Ikhouane, J.E. Hurtado, J. Rodellar, Variation of the hysteresis loop with the BoucWen model parameters, Nonlinear Dynamics, 48(4) (2007) 361–380.
[15] F. Ikhouane, J. Rodellar, Systems with hysteresis: analysis, identification and control using the Bouc– Wen model, John Wiley and Sons, 2007.
[16] K. Srinivasa, K. Venugopal, L. Patnaik, A selfadaptive migration model genetic algorithm for data mining applications, Information Sciences, 177(20) (2007) 4295-4313.
[17] W.H. Li, G.Z. Yao, G. Chen, S.H. Yeo, F.F. Yap, Testing and steady state modeling of a linear MR damper under sinusoidal loading, J. Smart Mater. Struct., 9(3) (2000) 95–102.
[18] H. Hesselbach, C. Abel-Keilhack, 2003 Finite element flow analysis of magnetic fluids with yield stress, Book of Abstracts des 5 Deutschen Ferro fluidWorkshop, (2000) 15–60.
[19] X. Wang, F. Gordaninejad, Flow analysis and modeling of field-controllable electro and magnetorheological fluids using Herrschel-Bulkley model, J. intel. Mat. Sys. Struc., 10(8) (1999) 601-608.
[20] N. Yasrebi, A. Ghazavi, M.M. Mashhadi, Magnetorhelogical fluid dampers modeling: numerical and experimental. In: Proceeding of the 17th IASTED international conference modeling and simulation, May 24–26 (2006), Montreal, Canada.
[21] J. Widjaja, B. Samali, J. Li, Electrorheological and magnetorheological duct flow in shear-flow mode using Herschel–Bulkley constitutive model, J. Eng. Mech., 129(12) (2003) 1459–1465.
[22] D. Susan-Resiga, 2009 A rheological model for magneto-rheological fluids, J. Intell .Mater. Syst. Struct., 20(13) (2009)1001-1010.
[23] G.H. Hitchcock, A novel magneto-rheological fluid damper, Master thesis Mechanical engineering Department Reno University of Nevada, (2002).
[24] N.C. Rosenfield, N.M. Wereley, Volumeconstrained optimization of magnetorheological andelectrorheological valves and dampers, Smart Mater. Struct.,13(6)(2004)1303-1313.
[25] Z. Parlak, T. Engin, I. Calli, Optimal design of MR damper via finite element analyses of fluid dynamic and magnetic field, Mechatronics, 22(6) (2012) 890–903.
[26] R.S. Prabakar, C. Sujatha, S. Narayanan, Response of a quarter car model with optimal magnetorheological damper parameters, Journal of Sound and Vibration, 332(9) (2013) 2191–2206.
[27] D.H. Wang, W.H. Liao, Neural network modeling and controllers for magnetorheological fluid dampers, in: Proceedings of the IEEE International Conference on Fuzzy Systems, Melbourne, Australia, December, (2001) 1323–1326.
[28] K.C. Schurter, P.N. Roschke, Fuzzy modeling of a magnetorheological damper using ANFIS, in: Proceedings of the Ninth IEEE International Conference on Fuzzy Systems, San Antonio, TX, (2000) 122–127.
[29] T. Tse, C.C. Chang, Shear-mode rotary magnetorheological damper for small-scale structural control experiments, J. Struct. Eng., 130(6) (2004) 904–911.
[30] D.R. Gamota, F.E. Filisko, Dynamic mechanical studies of electrorheological materials: Moderate frequencies, J. Rheology, 35(3) (1991) 199–225.
[31] D.C. Visser, H.C.J. Hoefsloot, P.D. Iedema, Modelling multi-viscosity systems with dissipative particle dynamics, J. Comp. Phys., 214(1) (2006) 491-504.
[32] D.A. Mackie, J.B. Avalos, V. Navas, Dissipative particle with energy conservation: Modelling of heat flow, J. Phys. Chem., 3(1) (1999) 2039-2049.
[33] E.E. Keaveny, I.V. Pivkin, M. Maxey, G.E. Karniadakis, coarse-graining limits in open and wallbounded disspative particles, J. Chem. Phys. 123(10) (2005) 104107-104113.
[34] N. Phan-Thien, Understanding Viscoelasticity, second edition, Springer, 2013.
[35] J. Li, F. Li, Q. Tian, C. Zhou, C. Xiao, L. Huang, W. Wang, W. Zhu, Force-electrical characteristics of a novel mini-damper Smart Mater. Struct., 25 (4) (2016) 105009-105016.
[36] B. Sapinski, J. Filus, Analysis of Parametric Models of MR Linear Damper. Department of Process Control, University of Mining and Metallurgy, 2003.
[37] X. Bai, N.M. Wereley, W. Hu, Maximizing semi active vibration isolation utlilzing a magneto rheological damper with an inner bypass configuration, J. appli. Phys., 117(2) (2015) 117-123.
[38] B. Mehrkian, A. Bahar, A. Chaibakhsh, Genetic algorithm based optimization approach for MR damper fuzzy modeling, World Academy of Science, Engineering and Technology, 59(2) (2011) 1035-1042.