مدل‌سازی میراگر هیدرولیکی مغناطیسی با رویکرد بهینه‌سازی خصوصیات مولکولی سیال مغناطیسی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری دانشگاه صنعتی شاهرود

2 دانشیار دانشکده مهندسی مکانیک دانشگاه صنعتی شاهرود

3 دانشیار، مهندسی مکانیک، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

میراگر هیدرولیکی مغناطیسی به‌عنوان یکی از پرکاربردترین تجهیزات در صنایع مختلف برای اولین بار با رویکرد بررسی خصوصیات مولکولی سیال مغناطیسی عامل در آن با استفاده از روش مدل‌سازی مولکولی دینامک ذره استهلاکی مورد مطالعه و بهینه‌سازی قرار گرفته است. بوسیله مدل اصلاح شده بوک ون شرایط پسماند مغناطیس و نیروی میراگری برای فراهم شدن توان میراگری 10 نیوتن مورد نیاز در میکرو ماشین‌ها محاسبه شده و پس از معتبرسازی با نتایج تجربی موجود در مقالات اثر خصوصیات مولکولی سیال مغناطیسی عامل بر آن بررسی شده است. نتایج حاصل از مدل‌سازی دینامیک ذره استهلاکی نشان می‌دهد با افزایش جرم و قطر ذرات مغناطیسی نیروی میراگری افزایش می‌یابد، در حالیکه با افزایش چگالی این ذرات و افزایش جرم ذرات سیال حامل، نیروی میراگری ابتدا افزایش و سپس کاهش پیدا می‌کند، بنابراین لازم است تا مقادیر بهینه تعیین شوند. همچنین مشاهده می‌شود با کاهش ضخامت لایه فعال در سطح ذرات مغناطیسی نیروی میراگری افزایش می‌یابد. در نهایت با توجه به نتایج بدست آمده، مقادیر بهینه هر یک از پارامترهای مورد مطالعه بمنظور فراهم آمدن توان میراگری 10 نیوتن با کمترین مقدار مصرف انرژی توسط میراگر تعیین شده و از میان سیال‌های مغناطیسی تجاری سیال 132-دیجی به‌عنوان بهترین سیال انتخاب می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling of the Magnetorheological Damper with Optimization Approach for Magnetic Fluid Molecular Properties

نویسندگان [English]

  • mohsen Ghafarian eidgahi 1
  • Mohammad Mohsen Shahmardan 2
  • Mahmood Norouzi 3
1 PhD student of mechanical engineering, Shahrood university of technology
2 Department of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran
3 Associated professor of mechanical engineering, Shahrood university of technology
چکیده [English]

Magnetorheological damper, as one of the most widely used equipment in various industries, was firstly studied and optimized using a molecular properties analysis of operating magnetic fluid in it utilizing dissipative particle dynamics as molecular modeling method. By using modified Bouc-Wen model, hysteresis and damping force level have calculated in order to provide the required 10 N power requirement in micro-machines and after validation with experimental results presented in papers, the effect of molecular properties of magnetic fluid operating on it has investigated. Results of molecular modeling by dissipative particle dynamics method show that by increasing mass and diameter of magnetic particles, damping force increases, while by increasing number density of these particles and increasing mass of carrier fluid particles, damping force firstly increases and then decreases. Therefore, it is necessary to set optimal values. It is also observed that by decreasing the thickness of the surfactant layer at the surface of the magnetic particles, damping force increases. Finally, according to the obtained results, the optimal values of each studied parameters were determined to provide 10 N damping force with the least amount of energy consumed by damper and selected from commercial magnetic fluids 132-DG fluid as suitable magnetorheological fluid.

کلیدواژه‌ها [English]

  • Magnetorheological damper
  • Dissipative particle dynamics
  • modeling
  • Magnetic fluid
  • Damping force
  • Hysteresis
[1]  Y.B. Kazakov, N.A. Morozov, S.A. Nesterov, Nesterov calculation of force-velocity relationship of electromechanical magnetorheological fluid damper, Vestnik IGEU, 11(4) (2015) 17–22.
[2]  J. Rabinow, The magnetic fluid clutch, Transactions of the American Institute of Electrical Engineers,67(2)(1948) 1308–1315.
[3]  Jr.B.F. Spencer, S. J. Dyke, M.K. Sain, J.D. Carlson, Phenomenological model for a magnetorheological damper. ASCE J. Eng. Mech., 123(3) (1997) 230–238.
[4]  D. Case, B. Taheri, E. Richer, Dynamic magnetorheological damper for orthotic tremor suppression, Biomed. Eng. Technol. 12 (2) (2011) 1218.
[5]  A. Rodriguez, F. Ikhouane, J. Rodellar, N. Luo, Modeling and identification of a small-scale magnetorheological damper. J Intell Mater Syst Struct, 20(7) (2009) 825–835.
[6]  J.W. Tu, J. Liu, W.L. Qu, Q. Zhou, H.B. Cheng, X.D. Cheng, Design and Fabrication of 500-kN Large-scale MR Damper, Journal of Intelligent Material Systems and Structures, 22(5) (2011) 475-487.
[7]  H. Xu, I. Qin, H. Clauberg, B. Chylak, V.L. Acoff, Behavior of palladium and its impact on intermetallic growth in palladium-coated cu wire bonding, Acta Mater. 61(1) (2013) 79–88.
[8]  D.R. Gamota, F.E. Filisko, Dynamic mechanical studies of electro rheological materials: moderate frequencies, J. Rheol. 35(3) (1991) 399–425.
[9]  R. Stanway, J.L. Sproston, N.G. Stevens, Non-linear modelling of an electro-rheological vibration damper, J. Electro stat. 20 (2) (1987) 167–84.
[10] Y.F.Liu, J. Li, Z. M. Zhang, X. H. Hu, W. Zhang, Wxperimental comparison of five friction models on the same test-bed of the micro stick-slip motion system, J. Mech. Sci., 32(6) (2015) 15-28.
[11] S.B. Choi, S.K. Lee, A hysteresis model for the fielddependent damping force of a magneto rheological damper. Journal of Sound and Vibration, 245(2) (2001) 375-383.
[12]  D.H. Wang, W.H. Liao, Modeling and control of magneto rheological fluid dampers using neural networks, Smart Materials and Structures, 14(1) (2005) 111-126.
[13] M. Sugeno, G.T. Kang, Structure identification of fuzzy model, Fuzzy Sets and Systems, 28(1) (1988) 15-33.
[14]  F. Ikhouane, J.E. Hurtado, J. Rodellar, Variation of the hysteresis loop with the BoucWen model parameters, Nonlinear Dynamics, 48(4) (2007) 361–380.
[15] F. Ikhouane, J. Rodellar, Systems with hysteresis: analysis, identification and control using the Bouc– Wen model, John Wiley and Sons, 2007.
[16] K. Srinivasa, K. Venugopal, L. Patnaik, A selfadaptive migration model genetic algorithm for data mining applications, Information Sciences, 177(20) (2007) 4295-4313.
[17] W.H. Li, G.Z. Yao, G. Chen, S.H. Yeo, F.F. Yap, Testing and steady state modeling of a linear MR damper under sinusoidal loading, J. Smart Mater. Struct., 9(3) (2000) 95–102.
[18] H. Hesselbach, C. Abel-Keilhack, 2003 Finite element flow analysis of magnetic fluids with yield stress, Book of Abstracts des 5 Deutschen Ferro fluidWorkshop, (2000) 15–60.
[19] X. Wang, F. Gordaninejad, Flow analysis and modeling of field-controllable electro and magnetorheological fluids using Herrschel-Bulkley model, J. intel. Mat. Sys. Struc., 10(8) (1999) 601-608.
[20] N. Yasrebi, A. Ghazavi, M.M. Mashhadi, Magnetorhelogical fluid dampers modeling: numerical and experimental. In: Proceeding of the 17th IASTED international conference modeling and simulation, May 24–26 (2006), Montreal, Canada.
[21] J. Widjaja, B. Samali, J. Li, Electrorheological and magnetorheological duct flow in shear-flow mode using Herschel–Bulkley constitutive model, J. Eng. Mech., 129(12) (2003) 1459–1465.
[22]  D. Susan-Resiga, 2009 A rheological model for magneto-rheological fluids, J. Intell .Mater. Syst. Struct., 20(13) (2009)1001-1010.
[23]  G.H. Hitchcock, A novel magneto-rheological fluid damper, Master thesis Mechanical engineering Department Reno University of Nevada, (2002).
[24]  N.C. Rosenfield, N.M. Wereley, Volumeconstrained optimization of magnetorheological andelectrorheological valves and dampers, Smart Mater. Struct.,13(6)(2004)1303-1313.
[25]  Z. Parlak, T. Engin, I. Calli, Optimal design of MR damper via finite element analyses of fluid dynamic and magnetic field, Mechatronics, 22(6) (2012) 890–903.
[26]  R.S. Prabakar, C. Sujatha, S. Narayanan, Response of a quarter car model with optimal magnetorheological damper parameters, Journal of Sound and Vibration, 332(9) (2013) 2191–2206.
[27]  D.H. Wang, W.H. Liao, Neural network modeling and controllers for magnetorheological fluid dampers, in: Proceedings of the IEEE International Conference on Fuzzy Systems, Melbourne, Australia, December, (2001) 1323–1326.
[28]  K.C. Schurter, P.N. Roschke, Fuzzy modeling of a magnetorheological damper using ANFIS, in: Proceedings of the Ninth IEEE International Conference on Fuzzy Systems, San Antonio, TX, (2000) 122–127.
[29]  T. Tse, C.C. Chang, Shear-mode rotary magnetorheological damper for small-scale structural control experiments, J. Struct. Eng., 130(6) (2004) 904–911.
[30]  D.R. Gamota, F.E. Filisko, Dynamic mechanical studies of electrorheological materials: Moderate frequencies, J. Rheology, 35(3) (1991) 199–225.
[31]  D.C. Visser, H.C.J. Hoefsloot, P.D. Iedema, Modelling multi-viscosity systems with dissipative particle dynamics, J. Comp. Phys., 214(1) (2006) 491-504.
[32]  D.A. Mackie, J.B. Avalos, V. Navas, Dissipative particle with energy conservation: Modelling of heat flow, J. Phys. Chem., 3(1) (1999) 2039-2049.
[33]  E.E. Keaveny, I.V. Pivkin, M. Maxey, G.E. Karniadakis, coarse-graining limits in open and wallbounded disspative particles, J. Chem. Phys. 123(10) (2005) 104107-104113.
[34]  N. Phan-Thien, Understanding Viscoelasticity, second edition, Springer, 2013.
[35]  J. Li, F. Li, Q. Tian, C. Zhou, C. Xiao, L. Huang, W. Wang, W. Zhu, Force-electrical characteristics of a novel mini-damper Smart Mater. Struct., 25 (4) (2016) 105009-105016.
[36] B. Sapinski, J. Filus, Analysis of Parametric Models of MR Linear Damper. Department of Process Control, University of Mining and Metallurgy, 2003.
[37]  X. Bai, N.M. Wereley, W. Hu, Maximizing semi active vibration isolation utlilzing a magneto rheological damper with an inner bypass configuration, J. appli. Phys., 117(2) (2015) 117-123.
[38]  B. Mehrkian, A. Bahar, A. Chaibakhsh, Genetic algorithm based optimization approach for MR damper fuzzy modeling, World Academy of Science, Engineering and Technology, 59(2) (2011) 1035-1042.