[1] J. Seddon, E.L. Goldsmith, Intake Aerodynamics, chaps. 1, 10, Collins Professional and Technical Books, London, 1985.
[2] M.A. Maljaee, J. Sepahi-Younsi, Experimental Investigation of Effects of Bleed Entrance Area on the Performance of a Supersonic Air Intake, in 3 th International Conference on Mechanical and Aerospace Engineering, Tehran, Iran, 2018. (In Persian).
[3] J. Seddon, The flow produced by interaction of a turbulent boundary layer with a normal shock wave of strength sufficient to cause separation, 3502, Aeronautical research council reports and memoranda, London, 1960.
[4] R.L. Trimpi, N.B. Cohen, Effect of Several Modifications to Center Body and Cowling on SubCritical Performance of a Supersonic Inlet at Mach number of 2.02, NACA, USA, RM-L55C16, 1955.
[5] B.W. Sanders, R.W. Cubbison, Effect of Bleed-System Back Pressure and Porous Area on the Performance of an Axisymmetric Mixed Compression Inlet at Mach 2.5, NASA, USA, TM-X-1710, 1968.
[6] L.J. Obery, R.W. Cubbison, Effectiveness of Boundary Layer Removal near Throat of Ramp-Type Side Inlet at Free-Stream Mach Number of 2.0, NACA, USA, RM-E54I14, 1954.
[7] L.J. Obery, C.F. Schueller, Effects of Internal BoundaryLayer Control on the Performance Supersonic Aft Inlets, NACA, USA, RM-E55L17, 1956.
[8] R.J. Shaw, J.F. Wasserbauer, H.E. Neumann, Boundary-Layer Bleed System Study for a Full-Scale Mixed-Compression Inlet With 45 Percent Internal Contraction, NASA, USA, TM-X-3358, 1976.
[9] R.W. Cubbison, E.T. Meleason, D.F. Johnson, Effect of Porous Bleed in a High-Performance Axisymmetric Mixed-Compression Inlet at Mach 2.50, NASA, USA, TM-X-1692, 1968.
[10] K. Kowalski, T.G. Piercy, Stability of Supersonic Inlets at Mach 1.91 with Air Injection and Suction, NACA, USA, RM-E56D12, 1956.
[11] D. Herrmann, K. Triesch, Experimental Investigation of Isolated Inlets for High Agile Missiles, Aerospace Science and Technology, 10(8) (2006) 659-667.
[12] C. Hirschen, D. Herrmann, A. Gülhan, Experimental Investigations of the Performance and Unsteady Behavior of a Supersonic Intake, Journal of Propulsion and Power, 23(3) (2007) 566-574.
[13] D. Herrmann, S. Blem, A. Gülhan, Experimental Study of Boundary-Layer Bleed Impact on Ramjet Inlet Performance, Journal of Propulsion and Power, 27(6) (2011) 1186-1195.
[14] M.R. Soltani, J. Sepahi Younsi, A. Daliri, Performance Investigation of a Supersonic Air Intake in the Presence of the Boundary-Layer Suction, Journal of Aerospace Engineering, 229(8) (2015) 1495-1509.
[15] M.R. Soltani, J. Sepahi Younsi, M. Farahani, Effects of Boundary-Layer Bleed Parameters on Supersonic Intake Performance, Journal of Propulsion and Power, 31(3) (2015) 826-836.
[16] M.R. Soltani, A. Daliri, J. Sepahi Younsi, M.Farahani, Effects of Bleed Position on Stability of a Supersonic Inlet, Journal of Propulsion and Power, 32(5) (2016) 1153-1166.
[17] T.I-P. Shih, M.J. Rimlinger, W.J. Chyu, ThreeDimensional Shock-Wave/Boundary-Layer Interactions with Bleed, AIAA Journal, 31(10) (1993) 819-1826.