مطالعه عددی تأثیر پدیده هال بر جریان دو بعدی مافوق صوت در ژنراتور مگنتوهیدرودینامیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه پدافند هوایی خاتم الانبیاء (ص)

2 دانشگاه کاشان

3 دانشگاه تربیت مدرس

چکیده

در تحقیق حاضر، جریان هوای مافوق صوت دو بعدی در یک ژنراتور هیدرودینامیک مغناطیسی )ام.اچ.دی( به صورت عددی مورد مطالعه قرار گرفته و اثر هال و هندسه بر این جریان بررسی شده است. این جریان به صورت گاز کامل، پایا و تراکم‌پذیر و با عدد رینولدز مغناطیسی پایین در یک کانال دو بعدی با چهار جفت الکترود و هندسه‌های مختلف شامل کانال‌هایی با سطح مقطع ثابت، همگرا واگرا و ترکیبی واگرا-ثابت، به عنوان مدل ژنراتور مگنتوهیدرودینامیک فارادی مورد بررسی قرار گرفته است. نتایج نشان می‌دهد که زاویه ماخ در کانال مستقیم کمتر از بقیه هندسه‌ها بوده و توان و راندمان الکتریکی و فشار خروجی در کانال ثابت نسبت به سایر هندسه‌ها بالاتر می‌باشد. همچنین اثر هال که مانع کاهش سرعت جریان پلاسما در اثر میدان مغناطیسی می‌باشد، باعث کاهش فشار خروجی و گرمایش ژول و افزایش راندمان الکتریکی در همه کانال‌ها گردید. با توجه به امکان سنجی استفاده از ژنراتور مگنتوهیدرودینامیک در صنایع هوافضایی و موشکی، نتایج مختلف به ویژه گرمایش ژول حاصل از جریان گاز کریپتون و جریان هوا مقایسه شده‌اند تا در صورتی که افزایش دما در اثر گرمایش ژول گاز کریپتون کمتر با توان و راندمان الکتریکی بیشتر باشد این گاز به عنوان گاز مناسب برای استفاده در صنایع گفته شده پیشنهاد شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Study of the Effect of the Hall phenomenon on Supersonic flow in Magneto Hydro Dynamic Generator

نویسندگان [English]

  • Mohammad pourjafargholi 1
  • Ghanbar Ali Sheikhzadeh 2
  • Reza maddahian 3
1 Khatam University,tehran
2
3 Tarbiat modares University
چکیده [English]

In the present research, the 2D supersonic airflow in a magneto-hydrodynamic generator is studied numerically and the effect of the Hall effect and the geometry on this flow is investigated. The flow is investigated as a perfect gas, steady and compressible with a low magnetic Reynolds number  in a two-dimensional channel with four pairs of electrodes and various geometries including channels with constant cross-section, convergent, divergent and divergent-constant sections as Faraday generator. The results displayed that the Mach angle in the direct channel is less than the other geometries and the output electric power and electrical efficiency and output pressure in the fixed channel are higher than other geometries. Also, Hall effect, which prevents deceleration of the plasma flow due to the magnetic field, reduced the output pressure and joule heating and increased electrical efficiency in all channels. To evaluate the Feasibility of the use of magneto-hydrodynamic generators in aerospace and missile industries, various results of the krypton gas flow and airflow, in particular Joule heating was compared. The comparison is done that if the joule heating of the krypton gas was less and the output electric power and electrical efficiency of this gas was more, it recommends as a proper gas for using in the mentioned industries.

کلیدواژه‌ها [English]

  • Magneto-hydrodynamic generator
  • Hall effect
  • Maxwell equations
  • Magnetic interaction number
  • Joule heating
[1]  M. Pourjafargholi, G. Sheikhzadeh, and R. Maddahian. "Numerical investigation of the effect of the geometry and boundary conditions on Supersonic flow in a 2D MHD channel." Modares Journal of Mechanical Engineering 17.8 (2017): 301-312 (in Persian).
[2]  S.V. Bobashev, E. A. D' yakonova, A. V. Erofeev, T.A. Lapushkina, V. G. Maslennikov, S. A. Poniaev, A. A. Sacharov, and R. V. Vasil'eva. "Shock tube facility for MGD supersonic flow control." 21st AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2000.
[3]    S. V. Bobashev, A. V. Erofeev, T. y. A. Lapushkina, S. A. Poniaev, R. V. Vasil’eva, and D. M. Van Wie, "Experiments on MHD control of attached shocks in diffuser." 41st Aerospace Sciences Meeting and Exhibit, 2003.
[4]    S. Bobashev, A. Erofeev, T. Lapushkina, N. Mende, S. Poniaev, V. Sakharov, R. Vasilieva and D. Van Wie. "Recent results on MHD flow control at Ioffe institute." 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, 2006.
[5]   T. Lapushkina, S. Bobashev, R. Vasil’eva, A. Erofeev, S. Ponyaev, V. Sakharov  and  D. Van  Wie.  "Influence of electric and magnetic fields on the shock wave configuration at the diffuser inlet." Technical Physics 47.4 (2002) 397-405.
[6]  A. Kuranov, and E. Sheikin. "Magnetohydrodynamic control on hypersonic aircraft under AJAX concept." Spacecraft and Rockets 40.2 (2003) 174-182.
[7] Z. Huang, Y. Liu, Z. Wang, and J. Cai. "Three-dimensional simulations of MHD generator coupling with outer resistance circuit." Simulation Modelling Practice and Theory 54 (2015) 1-18.
 [8] R. Tripathi, G.S. Seth, and M.K. Mishra. "Double diffusive flow of a hydromagnetic nanofluid in a rotating channel with hall effect and viscous dissipation: Active and passive control of nanoparticles." Advanced Powder Technology 28.10 (2017) 2630-2641.
[9] D. Ryan, C. Loescher, I. Hamilton, R. Bean, and A. Dix. "Magnetic variation and power density of gravity driven liquid metal magnetohydrodynamic generators. " Annals of Nuclear Energy 114 (2018) 325–328.
[10]M. Ishikawa, and K. Tateishit. "Development of Three- Dimensional Electric Current Streamer in Weakly Ionized Plasma with Strong Magnetic Field, High Temperature and High Velocity." AIAA 99-3813, 30th Plasma-dynamics and Lasers Conference, 1999.
[11]Y. P. Golovachov, Y. A. Kurakin, A. A. Schmidt, et al. "Numerical investigation of non-equilibrium MGD flows in supersonic intakes." 32nd AIAA Plasmadynamics and Lasers Conference, 2001.
[12]D. V. Gaitonde, and J. Poggie. "Elements of a numerical procedure for a 3-D MGD flow control analysis." 40th AIAA Aerospace Sciences Meeting and Exhibit, 2002.
[13]S. V. Bobashev, Y. P. Golovachov, and D. M. Van Wie. "Deceleration of supersonic plasma flow by an applied magnetic field." Propulsion and Power 19.4 (2003): 538- 546.
[14]Y. Golovachev, and S. Sushchikh. "Influence of electrode commutation on magnetohydrodynamic flow in a supersonic diffuser." Technical Physics Letters 25.5 (1999) 337-340.
[15]Z. Xiaomei,  L.  Haoyu,  X.  Dajun,  and  C. Guobiao, "Numerical Simulation of 2D Supersonic Magnetohydrodynamic Channel and Study on Hall Effect." Chinese Journal of Aeronautics 24.2 (2011) 136-144.
 [16]   A. Lebouvier, C. Delalondre, F. Fresnet, V. Boch, V. Rohani, F. Cauneau, and L. Fulcheri. "Three-Dimensional Unsteady MHD modeling of a low current - high voltage non-transferred DC plasma torch operating with air." IEEE Transactions on plasma science 39.9 (2011) 1-12.
[17]   P. Freton, J.J. Gonzalez, and G. Escalier "Prediction  of the cathodic arc root behaviour in a hollow cathode thermal plasma torch." Physics D: Applied Physics 42.19 (2009) 195-205.
[18]  E. Moreau, C. Chazelas, G. Mariaux, and A. Vardelle. "Modeling the restrike mode operation of a DC plasma spray torch." Thermal Spray Technology 15.4 (2006) 524–530.
[19]  D. Bernardi, V. Colombo, E. Ghedini, and A. Mentrelli. "Comparison of different techniques for the Fluent c based treatment of the electromagnetic field in inductively coupled plasma torches." The European Physical Journal D 27.1 (2003) 55–72.
[20] B. Selvan, and K. Ramachandran. "Comparisons between two different three-dimensional arc plasma torch simulations." Thermal. Spray Technology 18.5-6 (2009) 846–857.
[21] A. Blais, P. Proulx, and M. Boulos. "Three-dimensional numerical modelling of a magnetically deflected dc transferred arc in argon. " Physics D: Applied Physics 36.5 (2003) 488–496.
[22]  K. M. Tang, J. D. Yan, C. Chapman, and M. T. C. Fang. "Three- dimensional modelling of a dc arc plasma in a twin-torch system." Physics D: Applied Physics 43.34 (2010) 1-15.
[23]   H.P. Li, and E. Pfender, "Three dimensional modeling of the plasma spray process." Thermal Spray Technology 16.2 (2007) 245–260.
[24]  J. Bauchire, J. Gonzalez, and A. Gleizes. "Modeling of a DC plasma torch in laminar and turbulent flow." Plasma Chemistry and Plasma Processing 17.4 (1997) 409-432.
[25] Q. Zhou, H. Li, X. Xu, F. Liu, S. Guo, X. Chang, W. Guo, and P. Xu. "Comparative study of turbulence models on highly constricted plasma cutting arc." Physics D: Applied Physics 42.1 (2009) 1-14.
[26]  S. Bobashev, A. Erofeev,  T.  Lapushkina,  S. Poniaev, R. Vasil'eva, and D. Van Wie. "Effect of magnetohydrodynamics interaction in various parts of diffuser on inlet shocks: experiment." Propulsion and Power 21.5 (2005) 831-837.
[27]  S. Bobashev, R. Vasil’eva, E. D’yakonova, A. Erofeev,T. Lapushkina, V. Maslennikov, S. Ponyaev, V. Sakharov, and D. Van Wie. "The effect of MHD interactions on the input shock waves in a supersonic diffuser." Technical Physics Letters, 27.1 (2001) 71-73.
[28] Y. P. Golovachev, and S. Y. Sushchikh. "Supersonic air-scoop flows of a weakly ionized gas in external electromagnetic field." Technical Physics 45.2 (2000) 168-173.
[29] Y. P. Golovachov, A. Schmidt, and S. Y. Suschikh. "Numerical investigation of MGD flows in the models of supersonic intakes." Proceedings Of the 2nd Workshop on Magneto-Plasma-Aerodynamics in Aerospace Applications, 2000.
[30] C.P. Dullemond, and A. Johansen. "Lecture on: Hydrodynamics II: Numerical methods and applications." University of Heidelberg, 2007.
[31] Z.Y. Huang, Y.J. Liu, Z.Y. Wang, and J. Cai. "Three- dimensional simulations of MHD generator coupling with outer resistance circuit. " Simulation Modelling Practice and Theory 54 (2015) 1-18.
[32] M. Tezer-Sezgin, and S. H. Aydın. "Solution of magneto- hydrodynamic flow problems using the boundary element method." Engineering analysis with boundary elements 30.5 (2006) 411-418.