شبیه سازی فرآیند اسپری مایع در رژیم چکیدن با استفاده از روش سطح تراز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه یاسوج، یاسوج، ایران

2 دانشگاه یاسوج

چکیده

در این پژوهش فرایند اسپری مایع و تشکیل قطره در رژیم چکیدن با استفاده از یک رویکرد نامیرا در مدل کردن سطح مشترک، شبیه‌سازی می‌گردد و تأثیر پارامترهای مؤثر بر این فرآیند مانند عدد وبر، عدد اهنسرج و عدد باند مورد بررسی قرار می‌گیرد. برای دنبال کردن سطح مشترک از روش سطح تراز استفاده می‌شود. ناپیوستگی‌ها در سطح مشترک با استفاده از روش سیال مجازی اعمال می‌شوند. مشاهده می‌گردد که با افزایش عدد وبر از 0027 / 0 به 1875 / 0، طول مایع خروجی حدود 7 درصد افزایش و زمان شکست مایع حدود 52 درصدکاهش می‌یابد. همچنین، با افزایش عدد وبر بازگشت مایع به سمت نازل بعد از جدایش قطره کمتر است. افزایش عدد اهنسرج از 0002 / 0 به 189 / 0 باعث افزایش طول مایع خروجی تقریبا به میزان 21 درصد و افزایش زمان شکست به میزان 151 درصد می‌شود. همچنین، در اعداد اهنسرج بزر گتر بازگشت مایع به سمت نازل بیشتر است. افزایش عدد باند از 7 به 39 باعث کاهش طول مایع خروجی تقریبا به میزان 26 درصد و کاهش زمان شکست به میزان 91 درصد می‌شود. در اعداد باند بزرگ‌تر، بازگشت مایع به سمت نازل کمتر است. نتیجه قابل توجه دیگر، کاهش اندازه قطرات تشکیل شده با افزایش عدد باند می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulation of the Liquid Spraying Process in the Dripping Mode by Using the Level- Set Method

نویسنده [English]

  • Reza Khanpour 1
1 Yasouj University, Yasouj, Iran
چکیده [English]

In this study, liquid spraying process and drop formation in the dripping mode is simulated using a sharp interface method and effect of important parameters on this process such as Weber number, Ohnesorge number, and the Bond number is investigated. The level-set method is used for interface tracking. Discontinuities at the interface are imposed using the ghost fluid method. It is observed that by increasing the Weber number (from 0.0027 to 0.1875), the length of the outlet liquid  is increased by about 7 percent and the liquid breakup time is decreased by about 52 percent. Also, at higher Weber numbers, the liquid return toward the nozzle after droplet detachment is less. Increasing the Ohnesorge number (from 0.0002 to 0.189) increases the length of the outlet liquid about 21 percent and breakup time about 151 percent. Also, at higher Ohnesorge numbers, the liquid return toward the nozzle is higher. Increasing the Bond number (from 7 to 39) leads to the reduction of the length of the outlet liquid and breakup time about 26 and 91 percent, respectively. At higher Bond numbers, the liquid return toward nozzle is less. Another considerable result is the reduction of the size of formed droplets by enhancement of Bond number.

کلیدواژه‌ها [English]

  • Drop formation
  • Level set Method
  • Ghost Fluid Method
  • Dripping regime
[1] J. Eggers and E. Villermaux, Physics of liquid jets, Reports on Progress in Physics, 71 (2008),.532-537.
[2] O. Rabinovych, R. Pedrak, I. W. Rangelow, H. Ruehling and M. Maniak, Nanojet as a chemical scalpel for accessing the internal 3-D structure of biological cells, Microelectronic Engineering, 73 (2004) 843-846.
[3] T. Han and J. J. Yoh, A laser based  reusable microjet injector for transdermal drug delivery, Journal of Applied Physics, 107 (2010) 103-110.
[4]  D. F. Rutland and G. J. Jameson, Theoretical prediction of the sizes of drops formed in the breakup of capillary jets, Chemical Engineering Science, 25(1970) 1689-1698.
[5]  N. N. Mansour and T. S. Lundgren, Satellite formation in capillary jet breakup, Physics of Fluids A: Fluid Dynamics2, 1141 (1990) 215-222.
[6]  M. Tjahjadi, H. A. Stone and J. M. Ottino, Satellite and subsatellite formation in capillary breakup, Journal of Fluid Mechanics, 243 (1992) 297-317.
[7]  D. F. Fletcher, M. Mccaughe, and R. W. Hall, Numerical simulation of a laminar jet flow: a comparision of three CFD models, Computer Physics Communications, 78 (1993) 113-120.
[8] K. Shibata, S. Koshizuka and Y. Oka, Numerical analysis of jet breakup behavior using a particle method, Journal of Nuclear Science and Technology, 41 (2004) 715-722.
[9]  O. Desjardins, V. Moureau and H. Pitsch, An accurate conservative level set/ ghost fluid method for simulating turbulent atomization, Journal of Computational Physics, 227 (2008) 8395-8416.
[10]  S. Homma, J. Koga, S. Matsumoto, M. Song and G. Tryggvason, Breakup mode of an axisymmetric liquid jet injected into another immiscible liquid”, Chemical Engineering Science, 61 (2006) 3986-3996.
[11]  M. A. Herrada, J. M. Montanero, C. Ferrera and A. M. Ganan-Calvo, Analysis of the dripping-jetting transition in compound capillary jets, Journal of Fluid Mechanics, 649 (2010) 523-536.
[12] Z. Z. Che, T. N. Wong, N. T. Nguyen, Y. F. Yap and J. C. K. Chai, Numerical investigation of upstream pressure fluctuation during growth and breakup of pendant drops, Chemical Engineering Science, 66 (2011) 5293-5300.
[13]  A. Sauret and H. C. Shum, Beating the jetting regime, Journal of Fluid Mechanics, 13 (2012) 351-362.
[14] C. Hoefler, S. Braun, R. Koch and H. J. Bauer, Modeling spray formation in gas turbines-a new meshless approach, Journal of Engineering for Gas Turbines and Power, 135 (2013) 11503-11508.
[15]  X. S. Tian, H. Zhao, H. F. Liu, W. F. Li and J. L. Xu, Liquid entrainment behavior at the nozzle exit in coaxial gas-liquid jets, Chemical Engineering Science, 107 (2014) 93-101.
[16]   F. J. Salvador, J. V. Romero, M. D. Rosello and D. Jaramillo, Numerical simulation of primary atomization in diesel spray at low injection pressure, Journal of Computational and Applied Mathematics, 291 (2016) 94-102.
[17]      D. Trainer, Breakup length and liquid splatter characteristics of air-assisted water jet, International Journal of Multiphase Flow, 81(2016) 77-87.
[18]   I. Chakraborty, M. Rubio-Rubio, A. Sevilla and J. M. Gordillo, Numerical simulation of axisymmetric drop formation using a coupled level set and volume of fluid method, International Journal of Multiphase Flow, 84 (2016) 54-65.
[19]   M. Kang, R. P. Fedkiw and X. D. Liu, A boundary condition capturing method for multiphase incompressible flow, Journal of Scientific Computing, 15 (2000) 323-360.
[20]  A. J. Chorin, Numerical solution of the Navier-Stokes equations, Mathematics of Computation, 22 (1968) 745- 762.
[21]  R. Peyret and T. D. Taylor, Computational methods for fluyid flow, Springer-Verlag, New York, 1983.
[22]   S. Osher and R. P. Fedkiw, Level set methods and dynamic implicit surfaces, Springer-Verlag, New York, 2003.
[23]     P. Pournaderi and A. R. Pishevar, A numerical investigation of droplet impact on a heated wall in the film boiling regime, Heat and Mass Transfer, 48 (2012) 1525–1538.
[24]   M. Kang, R. P. Fedkiw and X. D. Liu, A boundary condition capturing method for poisson’s equation on irregular domains, Journal of Computational Physics, 160 (2000) 151–178.
[25]    M. Song, S. Homma and  K.  Hong,  Formation  of  oil drops discharged underwater, Proceedings of the Ninth International Offshore and Polar Engineering Conference, 1(1999) 390-396.
[26]   J. R. Richards, A. N. Beris and A. M. Lenhoff, Drop formation in liquid-liquid systems before and after jetting, Physics of Fluids, 7 (1995) 2617.