[1] C.R. Chamorro, M.E. Mondéjar, R. Ramos, J.J. Segovia, M.C. Martín, M.A. Villamañán, World geothermal power production status: Energy, environmental and economic study of high enthalpy technologies, Energy, 42(1) (2012) 10-18.
[2] J.W. Lund, D.H. Freeston, T.L. Boyd, Direct application of geothermal energy: 2005 worldwide review, Geothermics, 34(6) (2005) 691-727.
[3] M. Yari, Exergetic analysis of various types of geothermal power plants, Renewable Energy, 35(1) (2010) 112-121.
[4] N. Shokati, F. Ranjbar, M. Yari, Comparative and parametric study of double flash and single flash/ ORC combined cycles based on exergoeconomic criteria, Applied thermal engineering, 91 (2015) 479-495.
[5] X. Zhang, M. He, Y. Zhang, A review of research on the Kalina cycle, Renewable and sustainable energy reviews, 16(7) (2012) 5309-5318.
[6] J. Bao, L. Zhao, A review of working fluid and expander selections for organic Rankine cycle, Renewable and Sustainable Energy Reviews, 24 (2013) 325-342.
[7] Z. Shengjun, W. Huaixin, G. Tao, Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low- temperature geothermal power generation, Applied energy, 88(8) (2011) 2740-2754.
[8] F. Mohammadkhani, F. Ranjbar, M. Yari, A comparative study on the ammonia–water based bottoming power cycles: The exergoeconomic viewpoint, Energy, 87 (2015) 425-434.
[9] M.-H. Yang, R.-H. Yeh, Economic performances optimization of the transcritical Rankine cycle systems in geothermal application, Energy Conversion and Management, 95 (2015) 20-31.
[10] Y. Noorollahi, M.S. Shabbir, A.F. Siddiqi, L.K. Ilyashenko, E. Ahmadi, Review of two decade geothermal energy development in Iran, benefits, challenges, and future policy, Geothermics, 77 (2019) 257-266.
[11] S. Jalilinasrabady, R. Itoi, P. Valdimarsson, G. Saevarsdottir, H. Fujii, Flash cycle optimization of Sabalan geothermal power plant employing exergy concept, Geothermics, 43 (2012) 75-82.
[12] S.M. Bina, S. Jalilinasrabady, H. Fujii, Thermo- economic evaluation of various bottoming ORCs for geothermal power plant, determination of optimum cycle for Sabalan power plant exhaust, Geothermics, 70 (2017) 181-191.
[13] A. Aali, N. Pourmahmoud, V. Zare, Proposal and Analysis of a New Cycle for Power Generation from Sabalan Geothermal Wells, Journal of Mechanical Engineering University of Tabriz, 47(3) (2017) 139-147. (in Persian).
[14] A. Aali, N. Pourmahmoud, V. Zare, Exergy Analysis of a New Proposed Cycle for Power Generation from Sabalan Geothermal Wells,, Journal of Mechanical Engineering University of Tabriz, 48(1) (2018) 251-260. (in Persian).
[15]A.Aali, N. Pourmahmoud, V. Zare, Exergoeconomic analysis and multi-objective optimization of a novel combined flash-binary cycle for Sabalan geothermal power plant in Iran, Energy Conversion and Management, 143 (2017) 377-390.
[16] m. abdolalipouradl, S. Khalilarya, s. jafarmadar, Exergy analysis of a new proposal combined cycle from Sabalan geothermal source, Modares Mechanical Engineering, 18(4) (2018) 11-22. (in Persian).
[17] T. Lu, K. Wang, Analysis and optimization of a cascading power cycle with liquefied natural gas (LNG) cold energy recovery, Applied Thermal Engineering, 29(8-9) (2009) 1478-1484.
[18] H. Ghaebi, T. Parikhani, H. Rostamzadeh, A novel trigeneration system using geothermal heat source and liquefied natural gas cold energy recovery: Energy, exergy and exergoeconomic analysis, Renewable Energy, 119 (2018) 513-527.
[19] A. Mosaffa, N.H. Mokarram, L.G. Farshi, Thermo- economic analysis of combined different ORCs geothermal power plants and LNG cold energy, Geothermics, 65 (2017) 113-125.
[20] H. Ghaebi, A.S. Namin, H. Rostamzadeh, Exergoeconomic optimization of a novel cascade Kalina/Kalina cycle using geothermal heat source and LNG cold energy recovery, Journal of Cleaner Production, 189 (2018) 279-296.
[21] A. Sadreddini, M.A. Ashjari, M. Fani, A. Mohammadi, Thermodynamic analysis of a new cascade ORC and transcritical CO 2 cycle to recover energy from medium temperature heat source and liquefied natural gas, Energy Conversion and Management, 167 (2018) 9-20.
[22] N. Akbari, Introducing and 3E (energy, exergy, economic) analysis of an integrated transcritical CO2 Rankine cycle, Stirling power cycle and LNG regasification process, Applied Thermal Engineering, 140 (2018) 442-454.
[23] S. Klein, F. Alvarado, EES—Engineering Equation Solver. F-Chart Software. 2002.
[24] Ahrendts J, Reference states. Energy, 5(8-9) (1980) 666-677.
[25] A. Bejan, G. Tsatsaronis, M. Moran, Thermaldesign and optimization, John Wiley & Sons, 1996.
[26] M. Sadeghi, A. Nemati, M. Yari, Thermodynamic analysis and multi-objective optimization of various ORC (organic Rankine cycle) configurations using zeotropic mixtures, Energy, 109 (2016) 791-802.
[27] A. Elsayed, M. Embaye, R. Al-dadah, S. Mahmoud, A. Rezk, Thermodynamic performance of Kalina cycle system 11 (KCS11): feasibility of using alternative zeotropic mixtures, International Journal of Low-Carbon Technologies, 8(1) (2013) 69-78.
[28] F. Vélez, J. Segovia, F. Chejne, G. Antolín, A. Quijano, M.C. Martín, Low temperature heat source for power generation: exhaustive analysis of a carbon dioxide transcritical power cycle, Energy, 36(9) (2011) 5497-5507.