مطالعه تجربی و عددی توربین جزر و مدی عمود محور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران

2 علم و صنعت

3 علم و صنعت*مهندسی مکانیک

چکیده

توربین‌های جزر و مدی به منظور استحصال انرژی از جریا‌ن‌های دریایی و جزر و مدی استفاده می‌شوند و عموما بر اساس محور دوران خود به دو دسته محور افقی و محور عمودی تقسیم می‌شوند. در این پژوهش به بررسی پارامترهای مؤثر بر هیدرودینامیک جریان در یک توربین جزر و مدی محور عمودی هانتر پرداخته شده است. ابتدا توربین هانتر در مقیاس 1:20 ساخته شده و در محیط آزمایشگاهی مورد مطالعه تجربی قرار گرفته و سپس با استفاده از حل گذرای دینامیک سیالات محاسباتی به شبیه‌سازی عددی جریان پرداخته شده است. شبیه‌سازی در دو شرایط غیاب سطح آزاد و حضور آن به انجام رسیده است و از روش حجم سیال برای مدل‌سازی سطح آزاد بهره گرفته شده است. نتایج شبیه‌سازی با داده‌های آزمایشگاهی، صحت سنجی شده و تطابق مناسبی را نشان می‌دهد. ضریب قدرت بیشینه حدود 23 درصد است و در ضریب جریان بین 4/ 0 تا 43 / 0 اتفاق می‌افتد. نتایج شبیه‌سازی در غیاب سطح آزاد نشان می‌دهد با افزایش ضریب انسداد، ضریب قدرت افزایش می‌یابد به شکلی که در انسداد 2/ 0، ضریب قدرت از مقدار 8/ 4 درصد با افزایش 4/ 8 درصد به 2/ 13 درصد در انسداد 32 / 0 رسید. همچنین آنالیز سطح آزاد نشان می‌دهد، تغییر شکل سطح آزاد باعث ایجاد گشتاور بیشتری روی پره توربین می‌گردد؛ در حالی که متوسط ضریب گشتاور در غیاب سطح آزاد حداکثر 18 / 0 است، همین ضریب با وجود سطح آزاد با افزایش 120 درصدی به 4/ 0 می‌رسد و ضریب قدرت نیز 10 درصد افزایش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental and Numerical Study of a Vertical Axis Tidal Current Turbine

نویسندگان [English]

  • Mahmoodreza Hashemi 1
  • Mahdi Moghimi 2
  • Shahram Derakhshan Houre 3
1 Mechanical engineering department, Iran university if science and technology
2 School of Mechanical engineering, Iran university if science and technology
3 Mechanical engineering department, Iran university if science and technology
چکیده [English]

Tidal energy is one of the renewable energy sources, typically harvested through tidal turbines. Tidal turbines are classified as either vertical or horizontal turbines based on their rotation axis. The present investigation concerns parameters that affect flow hydrodynamics in a vertical-axis tidal turbine. A 1:20 Hunter turbine model was manufactured and investigated in a laboratory followed by transient solution Computational Fluid Dynamics simulations. The simulations were carried out for both rigid lid surfaces and free surface assumptions while SST k-ω turbulence model was used for both cases and volume of fluid method was employed for the free surface model. Simulations results verified by Empirical data which showed a good agreement. The power coefficient reached 0.23 at the best case scenario and the maximum power coefficient occurs at a flow coefficient between 0.4 and 0.43  for all investigated flows. Furthermore, the free surface simulations showed that the flow deflection   on the turbine region leads to a greater torque exerted on the turbine blade. While the maximum mean torque coefficient for the rigid lid cases is 0.18, for the free surface cases the said coefficient reaches 0.4 showing a 120 percent increase. Additionally, the free surface cases power coefficient increased by 10 percent

کلیدواژه‌ها [English]

  • Tidal turbine
  • Free surface
  • Power coefficient
  • Turbine height based Froude
  • Depth to height ratio
[1]  M. Kadiri, R. Ahmadian, B. Bockelmann-Evans, W. Rauen, R. Falconer, A review of the potential water quality impacts of tidal renewable energy systems, Renewable and sustainable energy reviews, 16(1) (2012) 329-341.
[2]  A.V. Da Rosa, Fundamentals of renewable energy processes, Academic Press, 2012.
[3]   O.B. Yaakob, K. Tawi, D.S. Sunanto, Computer simulation studies on the effect overlap ratio for savonius type vertical axis marine current turbine, Int. J. Eng. Trans. A Basics, 23 (2010) 79-88.
[4]  Y. Li, S.M. Calisal, Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine, Renewable energy, 35(10) (2010) 2325- 2334.
[5]    Y. Li, S.M. Çalişal, Numerical analysis of the characteristics of vertical axis tidal current turbines, Renewable Energy, 35(2) (2010) 435-442.
[6]   I. Masters, R. Malki, A.J. Williams, T.N. Croft, The influence of flow acceleration on tidal stream turbine wake dynamics: A numerical study using a coupled BEM–CFD model, Applied Mathematical Modelling, 37(16-17) (2013) 7905-7918.
[7]  P. Marsh, D. Ranmuthugala, I. Penesis, G. Thomas, Three-dimensional      numerical       simulations of straight-bladed vertical axis tidal turbines investigating power output, torque ripple and mounting forces, Renewable Energy, 83 (2015) 67- 77.
[8]   P. Bachant, M. Wosnik, B. Gunawan, V.S. Neary, Experimental study of a reference model vertical- axis cross-flow turbine, PloS one, 11(9) (2016) e0163799.
[9]  Q. Sheng, F. Jing, L. Zhang, N. Zhou, S. Wang, Z. Zhang, Study of the hydrodynamic derivatives of vertical-axis tidal current turbines in surge motion, Renewable Energy, 96 (2016) 366-376.
[10]A.A. Veisi, M.H. Shafiei Mayam, Turbulent structures in the wake of a wind turbine using Large Eddy Simulation, Amirkabir Journal of Mechanical Engineering, (2017) - (In Persian).
[11]  M. Rad, A. Zahedi Nejad, Fabrication and test of an axial wind turbine with the most power during absorbing flow kinetic energy, Amirkabir Journal of Mechanical Engineering, 50(4) (2018) 181-190 (In Persian).
[12]  P. Marsh, D. Ranmuthugala, I. Penesis, G. Thomas, The influence of turbulence model and two and three-dimensional domain selection on the simulated performance characteristics of vertical axis tidal turbines, Renewable energy, 105 (2017) 106-116.
[13]  N. Akbari, a. abdolahifar, Performance investigation of hybrid Darrieus-Savonius wind turbine compared to straight-bladed Darrieus turbine by Three- dimensional numerical simulation, Amirkabir Journal of Mechanical Engineering, (2018) - (In Persian).
[14]  H. Rahmani, M. Biglari, M.S. Valipour, K. Lari, Assessment of the numerical and experimental performance of screw tidal turbines, Proceedings of  the  Institution  of  Mechanical  Engineers,  Part A: Journal of Power and Energy, (2018) 0957650917753778.
[15]  B. Chen, S. Su, I.M. Viola, C.A. Greated, Numerical investigation of vertical-axis tidal turbines with sinusoidal pitching blades, Ocean Engineering, 155 (2018) 75-87.
[16]  Y. Ma, W.H. Lam, Y. Cui, T. Zhang, J. Jiang, C. Sun, J. Guo, S. Wang, S.S. Lam, G. Hamill, Theoretical vertical-axis tidal-current-turbine wake model using axial momentum theory with CFD corrections, Applied Ocean Research, 79 (2018) 113-122.
[17]  B. Chen, S. Cheng, T.-c. Su, H. Zhang, Numerical investigation of channel effects on a vertical-axis tidal turbine rotating at variable speed, Ocean Engineering, 163 (2018) 358-368.
[18]  B. Mannion, S.B. Leen, V. McCormack, S. Nash, Numerical Modelling of a Variable-Pitch, Vertical Axis Tidal Turbine Incorporating FlowAcceleration, in: ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers, 2018, pp. V07AT06A030-V007AT006A030.
[19] C.A. Consul, R.H. Willden, S.C. McIntosh, Blockage effects on the hydrodynamic performance of a marine cross-flow turbine, Phil. Trans. R. Soc. A, 371(1985) (2013) 20120299.
[20]  X. Bai, E. Avital, A. Munjiza, J. Williams, Numerical simulation of a marine current turbine in free surface flow, Renewable Energy, 63 (2014) 715-723.
[21]  J. Yan, X. Deng, A. Korobenko, Y. Bazilevs, Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines, Computers & Fluids, 158 (2017) 157-166.
[22] C. Vogel, G. Houlsby, R. Willden, Effect of free surface deformation on the extractable power of a finite width turbine array, Renewable Energy, 88(2016) 317-324.
[23]B. Yang, C. Lawn, Fluid dynamic performance of a vertical axis turbine for tidal currents, Renewable Energy, 36(12) (2011) 3355-3366.
[24]S. Derakhshan, M. Ashoori, A. Salemi, Experimental and numerical study of a vertical axis tidal turbine performance, Ocean Engineering, 137 (2017) 59-67.
[25] https://knowledge.autodesk.com
[26]H.K. Versteeg, W. Malalasekera, An introduction to computational fluid dynamics: the finite volume method, Pearson Education, 2007.