[1] J.S. Ian M. Ward, Mechanical Properties of Solid Polymers, 3rd ed., Wiley, 2012.
[2] L.E.N. Robert F. Landel, Mechanical Properties of Polymers and Composites, 2rd ed., Taylor & Francis Group, 1993.
[3] J.L. Bouvard, D.K. Ward, D. Hossain, S. Nouranian, E.B. Marin, M.F. Horstemeyer, Review of Hierarchical Multiscale Modeling to Describe the Mechanical Behavior of Amorphous Polymers, Journal of Engineering Materials and Technology, 131(4) (2009) .512140-602140-602140
[4] G. Ayoub, F. Zaïri, C. Fréderix, J.M. Gloaguen, M. Naït-Abdelaziz, R. Seguela, J.M. Lefebvre, Effects of crystal content on the mechanical behaviour of polyethylene under finite strains: Experiments and constitutive modelling, International Journal of Plasticity, 27(4) (2011) 492-511.
[5] G. Ayoub, F. Zaïri, M. Naït-Abdelaziz, J.M. Gloaguen, Modelling large deformation behaviour under loading– unloading of semicrystalline polymers: Application to a high density polyethylene, International Journal of Plasticity, 26(3) (2010) 329-347.
[6] A. Tayeb, M. Arfaoui, A. Zine, A. Hamdi, J. Benabdallah, M. Ichchou, On the nonlinear viscoelastic behavior of rubber-like materials: Constitutive description and identification, International Journal of Mechanical Sciences, 130 (2017) 437-447.
[7] F. Zaïri, M. Naït-Abdelaziz, J.M. Gloaguen, J.M. Lefebvre, A physically-based constitutive model for anisotropic damage in rubber-toughened glassy polymers during finite deformation, International Journal of Plasticity, 27(1) (2011) 25-51.
[8] A. Khan, H. Zhang, Finite deformation of a polymer: experiments and modeling, International Journal of Plasticity, 17(9) (2001) 1167-1188.
[9] F. Zaïri, M. Naït-Abdelaziz, J.M. Gloaguen, J.M. Lefebvre, Modelling of the elasto-viscoplastic damage behaviour of glassy polymers, International Journal of Plasticity, 24(6) (2008) 945-965.
[10] F. Zaïri, M. Naït-Abdelaziz, K. Woznica, J.-M. Gloaguen, Elasto-viscoplastic constitutive equations for the description of glassy polymers behavior at constant strain rate, Journal of Engineering Materials and Technology, 129(1) (2006) 29-35.
[11] A. Krairi, I. Doghri, J. Schalnat, G. Robert, W. Van Paepegem, Thermo-mechanical coupling of a viscoelastic-viscoplastic model for thermoplastic polymers: thermodynamical derivation and experimental assessment, International Journal of Plasticity, (2018).
[12] M.R. Gudimetla, I. Doghri, A finite strain thermodynamically-based constitutive framework coupling viscoelasticity and viscoplasticity with application to glassy polymers, International Journal of Plasticity, 98 (2017) 197-216.
[13] D. Lai, I. Yakimets, M. Guigon, A non-linear viscoelastic model developed for semi-crystalline polymer deformed at small strains with loading and unloading paths, Materials Science and Engineering: A, 405(1) (2005) 266-271.
[14] E. Roguet, S. Castagnet, J.C. Grandidier, Mechanical features of the rubbery amorphous phase in tension and torsion in a semi-crystalline polymer, Mechanics of Materials, 39(4) (2007) 380-391.
[15] G. Spathis, E. Kontou, A viscoelastic model for predicting viscoelastic functions of polymer and polymer nanocomposites, International Journal of Solids and Structures, 141-142 (2018) 102-109.
[16] R.N. Haward, G. Thackray, The Use of a Mathematical Model to Describe Isothermal Stress-Strain Curves in Glassy Thermoplastics, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 302(1471) (1968) 453-472.
[17] S. Belbachir, F. Zaïri, G. Ayoub, U. Maschke, M. Naït-Abdelaziz, J.M. Gloaguen, M. Benguediab, J.M. Lefebvre, Modelling of photodegradation effect on elastic–viscoplastic behaviour of amorphous polylactic acid films, Journal of the Mechanics and Physics of Solids, 58(2) (2010) 241-255.
[18] J. Richeton, S. Ahzi, K.S. Vecchio, F.C. Jiang, A. Makradi, Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates, International Journal of Solids and Structures, 44(24) (2007) 7938-7954.
[19] O. Starkova, Z. Zhang, H. Zhang, H.-W. Park, Limits of the linear viscoelastic behaviour of polyamide 66 filled with TiO2 nanoparticles: Effect of strain rate, temperature, and moisture, Materials Science and Engineering: A, 498(1) (2008) 242-247.
[20] J. F. Mano, J.C. Viana, Effects of the strain rate and temperature in stress–strain tests: study of the glass transition of a polyamide-6, Polymer Testing, 20(8) (2001) 937-943.
[21] G.-F. Shan, W. Yang, M.-b. Yang, B.-h. Xie, J.-m. Feng, Q. Fu, Effect of temperature and strain rate on the tensile deformation of polyamide 6, Polymer, 48(10) (2007) 2958-2968.
[22] M. Kokabi, Plactic engineering, in, Tarbiat Modares university, 1394 (In persian).
[23] L.J. Findley.W, Onaran.K, Creep and Relaxation of Nonlinear Viscoelastic Materials - With an Introduction to Linear Viscoelasticity, North-Holland, New York, 1976.
[24] H.E. Pettermann, J. Hüsing, Modeling and simulation of relaxation in viscoelastic open cell materials and structures, International Journal of Solids and Structures, 49(19) (2012) 2848-2853.
[25] S.P.C.M.G.J. Creus, Computational Viscoelasticity, Springer-Verlag Berlin Heidelberg, 2012.
[26] S.W. W. Steinmann, M. Beckers, G. Seide and T. Gries, Thermal Analysis of Phase Transitions and Crystallization in Polymeric Fibers., In: Applications of Calorimetry in a Wide Context : Differencial Scanning Calorimetry, Isothermal Titration Calorimetry and Minicalorimetry., (2013) 27:277.
[27] Materials properties library, Moldflow Plastics Insight 2012.
[28] ASTM D638, Standard Test Method for Tensile Properties of Plastics, in, ASTM international, 2002.
[29] N. Dusunceli, O.U. Colak, Modelling effects of degree of crystallinity on mechanical behavior of semicrystalline polymers, International Journal of Plasticity, 24(7) (2008) 1224-1242.
[30] M. Karevan, K. Kalaitzidou, Formation of a complex constrained region at the graphite nanoplateletspolyamide 12 interface, Polymer, 54(14) (2013) 3691.3698.