بررسی تجربی و شبیه‌سازی اعوجاج پلی آمید 6 بر اساس رفتار ترمومکانیکی بدست آمده از تست کشش تک محوره

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان

2 صنعتی اصفهان*مهندسی مکانیک

چکیده

این تحقیق به بررسی رفتار وابسته به زمان پلیآمید 6 و همچنین بررسی مدل کلی ماکسول جهت بیان این رفتار می‌پردازد. به همین منظور، نمونه‌های کشش توسط قالب‌گیری تزریق پلاستیک ساخته و براساس آزمایش رهایی از تنش، مورد آزمایش قرار می‌گیرند. همچنین برای بررسی تاثیر دمای قالب بر خواص وابسته به زمان این پلیمر، دو نمونه با دماهای قالب مختلف ساخته و مورد آزمایش قرار می‌گیرند. در پایان برای اعتبارسنجی مدل کلی ماکسول برای بیان درست رفتار وابسته به زمان پلیمر، یک شبیه‌سازی به روش المان محدود با ارتباط دو نرم‌افزار مولدفلو و آباکوس انجام گردیده که میزان اعوجاج نمونه حاصل از ضرایب استخراج شده از این مدل با میزان اعوجاج نمونه در عمل مقایسه می‌گردد. نتایج نشان می‌دهد که دمای قالب اثر کمی بر خواص وابسته به زمان این پلیمر دارد و همچنین مقایسه میزان اعوجاج نمونه بین شبیه‌سازی و تجربی که اختلاف 13 درصد با هم دارند، نشان می‌دهد که مدل کلی ماکسول به خوبی رفتار وابسته به زمان پلیآمید 6 را بیان می‌کند. لذا با توجه به اعتبارسنجی شبیه‌سازی با نمونه تجربی، این شبیه‌سازی می‌تواند جهت پیش‌بینی میزان اعوجاج نمونه و بررسی اثر پارامترهای فرآیندی مختلف بر رفتار آن قبل از تولید و صرف هزینه، استفاده گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental and Simulation Study on the Warpage of Polyamide 6 Based on Thermo Mechanical Behavior of Material Using Uniaxial Tensile Test

نویسندگان [English]

  • Omid Izadi 1
  • Peiman Mosaddegh 2
1 Department of Mechanical Engineering, Isfahan University of Technology
2 Department of Mechanical Engineering, Isfahan University of Technology
چکیده [English]

This research focuses on investigating the time-dependent behavior of polyamide 6 and using the generalized Maxwell model for prediction of this behavior. To achieve this goal, tensile specimens are manufactured via injection molding process and then are tested based on stress relaxation trials. Moreover, two specimens manufactured with different mold temperatures are tested to investigate the effect of the mold temperature on the time-dependent behavior of this kind of polymer. Finally, to evaluate the ability of the generalized Maxwell model to predict the time-dependent behavior of polyamide 6 correctly, a finite element simulation is carried out via a link between the Moldflow and ABAQUS software. In these simulations, the amount of warpage occurring in the specimen obtained from this model is compared with experimental finding. The results show that the mold temperature has a negligible effect on the time-dependent behavior of this polymer and also, there is a good agreement between simulation and experimental results of warpage with a mean error of 13%. Therefore, the generalized Maxwell model is good enough to predict the time-dependent behavior of polyamide 6. On the other hand, this methodology can be used prior to making real parts to prevent the high cost of manufacturing.

کلیدواژه‌ها [English]

  • Thermo-mechanical behavior
  • Viscoelastic
  • Warpage
  • Polyamide 6
[1]  J.S. Ian M. Ward, Mechanical Properties of Solid Polymers, 3rd ed., Wiley, 2012.
[2]  L.E.N. Robert F. Landel, Mechanical Properties of Polymers and Composites, 2rd ed., Taylor & Francis Group, 1993.
[3] J.L. Bouvard, D.K. Ward, D. Hossain, S. Nouranian, E.B. Marin, M.F. Horstemeyer, Review of Hierarchical Multiscale Modeling to Describe the Mechanical Behavior of Amorphous Polymers, Journal of Engineering Materials and Technology, 131(4) (2009) .512140-602140-602140
[4] G. Ayoub, F. Zaïri, C. Fréderix, J.M. Gloaguen, M. Naït-Abdelaziz, R. Seguela, J.M. Lefebvre, Effects of crystal content on the mechanical behaviour of polyethylene under finite strains: Experiments and constitutive modelling, International Journal of Plasticity, 27(4) (2011) 492-511.
[5] G. Ayoub, F. Zaïri, M. Naït-Abdelaziz, J.M. Gloaguen, Modelling large deformation behaviour under loading– unloading of semicrystalline polymers: Application to a high density polyethylene, International Journal of Plasticity, 26(3) (2010) 329-347.
[6] A. Tayeb, M. Arfaoui, A. Zine, A. Hamdi, J. Benabdallah, M. Ichchou, On the nonlinear viscoelastic behavior of rubber-like materials: Constitutive description and identification, International Journal of Mechanical Sciences, 130 (2017) 437-447.
[7] F. Zaïri, M. Naït-Abdelaziz, J.M. Gloaguen, J.M. Lefebvre, A physically-based constitutive model for anisotropic damage in rubber-toughened glassy polymers during finite deformation, International Journal of Plasticity, 27(1) (2011) 25-51.
[8] A. Khan, H. Zhang, Finite deformation of a polymer: experiments and modeling, International Journal of Plasticity, 17(9) (2001) 1167-1188.
[9] F. Zaïri, M. Naït-Abdelaziz, J.M. Gloaguen, J.M. Lefebvre, Modelling of the elasto-viscoplastic damage behaviour of glassy polymers, International Journal of Plasticity, 24(6) (2008) 945-965.
[10] F. Zaïri, M. Naït-Abdelaziz, K. Woznica, J.-M. Gloaguen, Elasto-viscoplastic constitutive equations for the description of glassy polymers behavior at constant strain rate, Journal of Engineering Materials and Technology, 129(1) (2006) 29-35.
[11] A. Krairi, I. Doghri, J. Schalnat, G. Robert, W. Van Paepegem, Thermo-mechanical coupling of a viscoelastic-viscoplastic model for thermoplastic polymers: thermodynamical derivation and experimental assessment, International Journal of Plasticity,  (2018).
[12] M.R. Gudimetla, I. Doghri, A finite strain thermodynamically-based constitutive framework coupling viscoelasticity and viscoplasticity with application to glassy polymers, International Journal of Plasticity, 98 (2017) 197-216.
[13] D. Lai, I. Yakimets, M. Guigon, A non-linear viscoelastic model developed for semi-crystalline polymer deformed at small strains with loading and unloading paths, Materials Science and Engineering: A, 405(1) (2005) 266-271.
[14] E. Roguet, S. Castagnet, J.C. Grandidier, Mechanical features of the rubbery amorphous phase in tension and torsion in a semi-crystalline polymer, Mechanics of Materials, 39(4) (2007) 380-391.
[15] G. Spathis, E. Kontou, A viscoelastic model for predicting viscoelastic functions of polymer and polymer nanocomposites, International Journal of Solids and Structures, 141-142 (2018) 102-109.
[16] R.N. Haward, G. Thackray, The Use of a Mathematical Model to Describe Isothermal Stress-Strain Curves in Glassy Thermoplastics, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 302(1471) (1968) 453-472.
[17] S. Belbachir, F. Zaïri, G. Ayoub, U. Maschke, M. Naït-Abdelaziz, J.M. Gloaguen, M. Benguediab, J.M. Lefebvre, Modelling of photodegradation effect on elastic–viscoplastic behaviour of amorphous polylactic acid films, Journal of the Mechanics and Physics of Solids, 58(2) (2010) 241-255.
[18] J. Richeton, S. Ahzi, K.S. Vecchio, F.C. Jiang, A. Makradi, Modeling and validation of the large  deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates, International Journal of Solids and Structures, 44(24) (2007) 7938-7954.
[19]  O. Starkova, Z. Zhang, H. Zhang, H.-W. Park, Limits of the linear viscoelastic behaviour of polyamide 66 filled with TiO2 nanoparticles: Effect of strain rate, temperature, and moisture, Materials Science and Engineering: A, 498(1) (2008) 242-247.
[20] J. F. Mano, J.C. Viana, Effects of the strain rate and temperature in stress–strain tests: study of the glass transition of a polyamide-6, Polymer Testing, 20(8) (2001) 937-943.
[21] G.-F. Shan, W. Yang, M.-b. Yang, B.-h. Xie, J.-m. Feng, Q. Fu, Effect of temperature and strain rate on the tensile deformation of polyamide 6, Polymer, 48(10) (2007) 2958-2968.
[22]  M. Kokabi, Plactic engineering, in, Tarbiat Modares university, 1394 (In persian).
[23]   L.J. Findley.W, Onaran.K, Creep and Relaxation of Nonlinear Viscoelastic Materials - With an Introduction to Linear Viscoelasticity, North-Holland, New York, 1976.
[24] H.E. Pettermann, J. Hüsing, Modeling and simulation of relaxation in viscoelastic open cell materials and structures, International Journal of Solids and Structures, 49(19) (2012) 2848-2853.
[25] S.P.C.M.G.J. Creus, Computational Viscoelasticity, Springer-Verlag Berlin Heidelberg, 2012.
[26]  S.W. W. Steinmann, M. Beckers, G. Seide and T. Gries, Thermal Analysis of Phase Transitions and Crystallization in Polymeric Fibers., In: Applications of Calorimetry in a Wide Context : Differencial Scanning Calorimetry, Isothermal Titration Calorimetry and Minicalorimetry.,  (2013) 27:277.
[27] Materials properties library, Moldflow Plastics Insight 2012.
[28] ASTM D638, Standard Test Method for Tensile Properties of Plastics, in, ASTM international, 2002.
[29] N. Dusunceli, O.U. Colak, Modelling effects of degree of crystallinity on mechanical behavior of semicrystalline polymers, International Journal of Plasticity, 24(7) (2008) 1224-1242.
[30] M. Karevan, K. Kalaitzidou, Formation of a complex constrained region at the graphite nanoplateletspolyamide 12 interface, Polymer, 54(14) (2013) 3691.3698.