مدل‌سازی میرایی در میکرومحرک های‌‌ پیچشی دو محوره با درنظر گرفتن خمش تیرهای نگهدارنده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران

2 دانشگاه فردوسی مشهد

چکیده

میکرومحرک‌های پیچشی در کاربردهای متعددی از جمله سوئیچ‌های نوری، تصویربرداری زیست پزشکی و نورشناسی مورد استفاده قرار می‌گیرند. میرایی لایه هوای فشرده یکی از مکانیز مهای اتلاف انرژی در این میکرومحرک‌ها می‌باشد. این میرایی، یک عامل کلیدی در تع یین عملکرد دینامیکی سیستم‌های میکروالکترومکانیکی می‌باشد که به طور گسترده مورد توجه محققان قرار گرفته است. هدف از این مقاله نیز، مدل‌سازی میرایی لایه هوای فشرده در میکرومحرک‌های پیچشی دو محوره با درنظر گرفتن اثر خمشی تیرهای نگهدارنده می‌باشد. بدین منظور ابتدا معادله رینولدز حاکم بر رفتار هوا حبس شده در زیر میکرومحرک نوشته و سپس با توجه به شرایط مسئله و صر فنظر از اثرات اینرسی هوا در مقایسه با اثرات لزجت، معادله رینولدز، ساده‌سازی شده است. معادله حاصل پس از بی‌بعدسازی، با استفاده از روش گسترش یافته‌ی کانتروویچ، حل شده و توزیع فشار هوای فشرده به دست آمده است. از توزیع فشار حاصله به منظور محاسبه نیرو و گشتاور میرایی لایه هوای فشرده استفاده شده است. در ادامه، تأثیر پارامترهای طراحی میکرومحرک دو محوره روی گشتاورهای میرایی بررسی شد و برای تحلیل دقیق‌تر اثر این پارامترها برروی گشتاورها و نیروی بابعد نیز مورد مطالعه قرار گرفت. از نتایج این مقاله می‌توان به خوبی برای مدل‌سازی دقیق دینامیک و کنترل میکرومحرک‌های پیچشی استفاده کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Damping Modeling in Dual Axis Torsion Micro-Actuators Considering the Bending of the Supporting Beams

نویسنده [English]

  • Mozhde Khadembashi 1
1 School of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
2 Room 214, School of Mechanical Engineering, Department of Eng, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

Torsional micro-actuators are employed in a variety of applications such as optical switches and biomedical imaging. Squeezed film damping is one of the important energy loss mechanisms in these systems. This kind of damping is a key factor in the performance characterization of micro-electro-mechanical systems and has been paid attention by many researchers. The objective of this paper is modeling the squeeze film air damping in dual axis torsional micro-actuators by considering the bending of the supporting torsion beams. To do so, first, the air inertial effects is neglected compared to its viscosity and the Reynolds equation governing the behavior of trapped air between the actuator and the underneath plate is simplified. The resulting equation is then normalized and solved using the extended Kantorovich method for obtaining the air pressure distribution under the plate. This pressure distribution is then employed for finding the damping force and torques. A parametric study is also carried out to determine the effect of different design parameters on the damping of the system. The results of this paper can be effectively employed for accurate dynamic modeling of dual axis torsional micro-actuators.

کلیدواژه‌ها [English]

  • Torsional micro-actuator
  • Squeezed film damping
  • Bending of the supporting torsion beams
  • Extended Kantorovich method
[1]  O. Solgaard, A.A. Godil, R.T. Howe, L.P. Lee, Y.-A. Peter, H. Zappe, Optical MEMS: From micromirrors to complex systems, Journal of Microelectromechanical systems, 23(3) (2014) 517-538.
[2] S. Finny, R. Resmi, Analysis of squeeze film damping in piston mode micromirrors, in: Inventive Computation Technologies (ICICT), International Conference on, IEEE, 2016, pp. 1-5.
[3]  M. Bao, H. Yang, Squeeze film air damping in MEMS, Sensors and Actuators A: Physical, 136(1) (2007) 3-27.
[4]  H. Moeenfard, M.T. Ahmadian, A. Farshidianfar, Analytical modeling of squeeze film damping in micromirrors, in: Proceedings of the ASME international design engineering technical conferences and computers and information in engineering conference, 2011, pp. 10016-15990.
[5]  N.A. Diab, I.A. Lakkis, Investigation of the Squeeze Film Dynamics Underneath a Microstructure With Large Oscillation Amplitudes and Inertia Effects, Journal of Tribology, 138(3) (2016) 031704.
[6]  H. Yagubizade, M.I. Younis, The effect of squeeze- film damping on the shock response of clamped- clamped microbeams, Journal of Dynamic Systems, Measurement, and Control, 134(1) (2012) 011017.
[7]  M.I. Younis, A.H. Nayfeh, Simulation of squeeze-film damping of microplates actuated by large electrostatic load, Journal of Computational and Nonlinear Dynamics, 2(3) (2007) 232-241.
[8]  W.E. Newell, Miniaturization of tuning forks, Science, 161(3848) (1968) 1320-1326.
[9]    S. Finny, R. Resmi, Material and geometry optimization for squeeze film damping in a micromirror, in: Emerging Technological Trends (ICETT), International Conference on, IEEE, 2016, pp. 1-5.
[10]  I.Z. Famileh, J.A. Esfahani, H. Moeenfard, Entropy generation analysis of squeeze film air damping in torsional micromirrors, Optik-International Journal for Light and Electron Optics, 126(1) (2015) 28-37.
[11] S. Malihi, Y.T. Beni, H. Golestanian, Dynamic pull- in stability of torsional nano/micromirrors with size- dependency, squeeze film damping and van der Waals effect,  Optik  -  International  Journal  for  Light  and Electron Optics, 128(Supplement C) (2017) 156-171.
[12] H. Moeenfard,  M.T.  Ahmadian,  The  influence  of vertical deflection of the supports in modeling squeeze film damping in torsional micromirrors, Microelectronics Journal, 43(8) (2012) 530-536.
[13]  M. Radgolchin, H. Moeenfard, Size-dependent nonlinear vibration analysis of shear deformable microarches using strain gradient theory, Acta Mechanica, 229(7) (2018) 3025-3049.
[14] J.P. Zhao, H.L. Chen, J.M. Huang, A.Q. Liu, A study of dynamic characteristics and simulation of MEMS torsional micromirrors, Sensors and Actuators A: Physical, 120(1) (2005) 199-210.
[15]  H. Moeenfard, Analytical modeling of squeeze film damping in dual axis torsion microactuators, Surface Review and Letters, 22(01) (2015) 1550006.
[16]  M. Bao, Y. Sun, J. Zhou, Y. Huang, Squeeze-film air damping of a torsion mirror at a finite tilting angle, Journal of Micromechanics and Microengineering, 16(11) (2006) 2330.
[17]  M. Bao, Analysis and design principles of MEMS devices, Elsevier, 2005.
[18]  J.B. Starr, Squeeze-film damping in solid-state accelerometers, in: Solid-State Sensor and Actuator Workshop, 1990. 4th Technical Digest., IEEE, IEEE, 1990, pp. 44-47.
[19]  M.H. Sadd, A.K. Stiffler, Squeeze film dampers: Amplitude effects at low squeeze numbers, Journal of engineering for industry, 97(4) (1975) 1366-1370.