تحلیل فرکانس و تخمین پارامترهای تشکیل حباب در ستون سیال

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دوره دکتری، تهران، تربیت مدرس

2 دانشگاه تربیت مدرس

چکیده

ردیابی و شناسایی نویز حاصل از تشکیل حباب یکی از روش‌های بررسی خصوصیات فیزیکی حباب‌ها می‌باشد. در این تحقیق مدل تخمین نویزهای حاصل از تشکیل حباب در ستون سیال، با اعمال روش ترکیبی مدل‌سازی آشفتگی، در نظر گرفتن جریان تراکم پذیر، اعمال روش مناسب شبیه‌سازی سطح مشترک و استفاده از سطح مناسب برداشت داده‌های آکوستیک بهبود داده شده است. بر این اساس شبیه‌سازی سه‌بعدی جریان دوفازی تراکم‌پذیر با کمک روش حجم سیال انجام شده است. همچنین با استفاده از سطح مناسب برداشت داده‌های آکوستیک نویزهای حاصل از تشکیل حباب شناسایی شده است. شایان ذکر است ضمن نمایش استقلال مدل از شبکه، اعتبارسنجی مدل توسط تطبیق دادن نتایج با تئوری‌های موجود و مقایسه با داده‌های تجربی صورت پذیرفته است. در این میان نتایج حاصل از حجم حباب‌های ایجادشده، سرعت ترمینال، نحوه تغییر شکل حباب‌ها و فرکانس طبیعی تولید حباب‌ها بررسی و مقایسه گردیده است. نشان داده شده است که با افزایش اندازه حباب فرکانس طبیعی کاهش یافته است. همچنین واردکردن تراکم‌پذیری به مدل و همچنین برداشت داده‌ها در محل تولید حباب، سبب ایجاد تصویر دقیق‌تری از نمایش نوسانات شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Frequency Analysis and Parametric Estimation of Bubble Formation in Vertical Column

نویسندگان [English]

  • Ehsan Habibi Siyahpoosha 1
  • Mohammad Reza ansari 2
1 Faculty of Mechanical Engineering, Tehran, Tarbiat Modares University
2 Faculty of Mechanical Engineering
چکیده [English]

Frequency analysis is one of the most important methods to estimate parameters of bubble formation in a vertical liquid column. In the present article, the frequency of bubble formation was analysed. Three-dimensional transient two-phase flow was simulated based on the volume of fluid method. Hybrid Reynolds averaged Navier-Stokes/large eddy simulation turbulence methods were used to improve the ability of computational fluid dynamics to capture formation of bubble in the vertical column. The model used for frequency response prediction was modified by applying the compressibility effect that improved the results for the acoustic behaviour. Due to the importance of interface tracking for sound sources recognition in addition to the problems which occur during combining with the large eddy simulation model in the simulation, different interface reconstruction methods have been applied and high-resolution interface capturing scheme was selected. The results were verified by theoretical and empirical data. Furthermore, it was presented that the natural frequency of bubble reduced as the size of the bubbles increased. The compressibility effect improved the results more accurately and the model behaviour was acted more physically.

کلیدواژه‌ها [English]

  • Bubble formation
  • Aerodynamic noises
  • Natural frequency of bubble
[1] R. Hughes, A. Handlos, H. Evans, R. Maycock, Formation of bubbles at simple orifices, in, Library of Congress, 1955.
[2]L. Davidson, E.H. Amick Jr, Formation of gas bubbles at horizontal orifices, AIChE Journal, 2(3) (1956) 337-342.
[3] R.J. Benzing, J.E. Myers, Low frequency bubble formation at horizontal circular orifices, Industrial & Engineering Chemistry, 47(10) (1955) 2087-2090.
[4] C. Quigley, A. Johnson, B. Harris, Size and mass transfer studies of gas bubbles, in:  Chemical Engineering Progress Symposium Series, American Institute of Chemical Engineers, New York, 1955, pp. 31.
[5] W. Siemes, Gasblasen in Flüssigkeiten. Teil I: Entstehung von Gasblasen an nach oben gerichteten kreisförmigen Düsen, Chemie Ingenieur Technik, 26(8-9) (1954) 479-496
[6]  W. Siemes, Gasblasen in Flüssigkeiten. Teil II: Der Aufstieg von Gasblasen in Flüssigkeiten, Chemie Ingenieur Technik, 26(11) (1954) 614-630..
[7] J. Davidson, B. Schüler, Bubble formation at an orifice in a viscous liquid, Chemical Engineering Research and Design, 75 (1997) S105-S115.
[8] A.A. Kulkarni, J.B. Joshi, Bubble formation and bubble rise velocity in gas− liquid systems: a review, Industrial & Engineering Chemistry Research, 44(16) (2005) 5873-5931.
[9] R.T. Knapp, A. Hollander, Laboratory investigations of the mechanism of cavitation, Transactions of the ASME, 70 (1948) 419-433.
[10]  I. Dias, M. Reithmuller, PIV in two-phase flows: simultaneous bubble sizing and liquid velocity measurements, in:  Laser Techniques Applied to Fluid Mechanics, Springer, 2000, pp. 71-85.
[11]  W. Lauterborn, W. Hentschel, Cavitation bubble dynamics studied by high speed photography and holography: part one, Ultrasonics, 23(6) (1985) 260268.
[12]  H. Meng, P. Boot, C. Van Der Geld, High pressure optical measurements of sizes, velocities and longitudinal positions of bubbles, International journal of multiphase flow, 21(1) (1995) 95-105.
[13]  E. Gaddis, A. Vogelpohl, Bubble formation in quiescent liquids under constant flow conditions, Chemical Engineering Science, 41(1) (1986) 97-105.
[14]  H.N. Oguz, A. Prosperetti, Dynamics of bubble growth and detachment from a needle, Journal of Fluid Mechanics, 257 (1993) 111-145.
[15]  Z. Yang, T.-N. Dinh, R. Nourgaliev, B. Sehgal, Numerical investigation of bubble growth and detachment by the lattice-Boltzmann method, International Journal of Heat and Mass Transfer, 44(1) (2001) 195-206.
[16]  A. Das, P. Das, Incorporation of diffuse interface in smoothed particle hydrodynamics: implementation of the scheme and case studies, International Journal for Numerical Methods in Fluids, 67(6) (2011) 671-699.
[17]  A. Das, P. Das, Equilibrium shape and contact angle of sessile drops of different volumes—Computation by SPH and its further improvement by DI, Chemical Engineering Science, 65(13) (2010) 4027-4037.
[18]  A. Das, P. Das, Bubble evolution through submerged orifice using smoothed particle hydrodynamics: Basic formulation and model validation, Chemical Engineering Science, 64(10) (2009) 2281-2290.
[19]  M. Huber, D. Dobesch, P. Kunz, M. Hirschler, U. Nieken, Influence of orifice type and wetting properties on bubble formation at bubble column reactors, Chemical Engineering Science, 152 (2016) 151-162.
[20]  S. Fleckenstein, D. Bothe, Simplified modeling of the influence of surfactants on the rise of bubbles in VOF-simulations, Chemical engineering science, 102 (2013) 514-523.
[21]  M. Pourtousi, P. Ganesan, A. Kazemzadeh, S.C. Sandaran, J. Sahu, Methane bubble formation and dynamics in a rectangular bubble column: A CFD study, Chemometrics and Intelligent Laboratory Systems, 147 (2015) 111-120.
[22]  G.M. de Oliveira, A.T. Franco, C.O. Negrão, A.L. Martins, R.A. Silva, Modeling and validation of pressure propagation in drilling fluids pumped into a closed well, Journal of Petroleum Science and Engineering, 103 (2013) 61-71.
[23]  N. Chung, W. Lin, B. Pei, Y. Hsu, Sound attenuation and its relationship with interfacial area density in an air-water two-phase bubbly flow, Flow Measurement and Instrumentation, 3(1) (1992) 45-53.
[24]  R.J. Benzing, J.E. Myers, Low frequency bubble formation at horizontal circular orifices, Industrial & Engineering Chemistry, 47(10) (1955) 2087-2090.
[25]  M.S. Longuet-Higgins, Monopole emission of sound by asymmetric bubble oscillations. Part 1. Normal modes, Journal of Fluid Mechanics, 201 (1989) 525.145
[26]  M.S. Longuet-Higgins, Monopole emission of sound by asymmetric bubble oscillations. Part 2. An initialvalue problem, Journal of Fluid Mechanics, 201 (1989) 543-565.
[27]  M.S. Plesset, A. Prosperetti, Bubble dynamics and cavitation, Annual review of fluid mechanics, 9(1) (1977) 145-185.
[28]  T. Alhashan, A. Addali, The effect of salt water on bubble formation during pool boiling using acoustic emission technique, IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-ISSN,  (2016) 2278-1684.
[29]  T. Alhashan, A. Addali, J.A. Teixeira, S. Elhashan, Identifying bubble occurrence during pool boiling employing acoustic emission technique, Applied Acoustics, 132 (2018) 191-201.
[30]  L. Chen, C. Norwood, P. White, T. Leighton, Study of bubble formation dynamics based on associated acoustic radiation, ICSV24, London, 23-27 July 2017
[31]  Z. Wang, Y. Li, B. Huang, D. Gao, Numerical investigation on the influence of surface tension and viscous force on the bubble dynamics with a CLSVOF method, Journal of Mechanical Science and Technology, 30(6) (2016) 2547-2556.
[32]  N. Balcázar, O. Lehmkuhl, L. Jofre, J. Rigola, A. Oliva, A coupled volume-of-fluid/level-set method for simulation of two-phase flows on unstructured meshes, Computers & Fluids, 124 (2016) 12-29.
[33]  S.-P.Wang, G.-Q. Chen, X. Huang, Bubble dynamics and its applications., Journal of Hydrodynamics, (2018)1-17.
[34]  R. Manasseh, G. Riboux, F. Risso, Sound generation on bubble coalescence following detachment, International Journal of Multiphase Flow, 34(10) (2008) 938-949.
[35]  P.A.V. Olivares, Acoustic wave propagation and modeling turbulent water flows with acoustics for district heating pipes, Ph. D. dissertation, Uppsala Univeristy, 2009.
[36]  M. Piellard, C. Bailly, Several Computational Aeroacoustics solutions for the ducted diaphragm at low Mach number, in:  16th AIAA/CEAS aeroacoustics conference, 2010, pp. 3996.
[37]  J. Liu, Simulation of whistle noise using computational fluid dynamics and acoustic fInite element simulation, Theses and Dissertations, Mechanical Engineering-University of Kentucky,2012
[38]  J. Liu, S. Qin, D. Wu, Acoustic analyses on jetbubble formation based on 3D numerical simulations, in:  INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Institute of Noise Control Engineering, 2016, pp. 1459-1467.
[39]  F. Xiao, M. Dianat, J.J. McGuirk, LES of turbulent liquid jet primary breakup in turbulent coaxial air flow, International Journal of Multiphase Flow, 60 (2014) 103-118.
[40]  J. Liu, W. Wang, N. Chu, D. Wu, W. Xu, Numerical simulations and experimental validation on passive acoustic emissions during bubble formation, Applied Acoustics, 130 (2018) 34-42.
[41]  X. Ma, B. Huang, Y. Li, Q. Chang, S. Qiu, Z. Su, X. Fu, G. Wang, Numerical simulation of single bubble dynamics under acoustic travelling waves, Ultrasonics sonochemistry, 42 (2018) 619-630. 
[42]  N.K. Singh, P.A. Rubini, Large eddy simulation of acoustic pulse propagation and turbulent flow interaction in expansion mufflers, Applied Acoustics, 98 (2015) 6-19.
[43]  E. Habibi, M. Ansari, Acoustic analysis of aerodynamics noise of bubble formation in fluid column, Sharif journal, (2019),10.24200/ j40.2017.10769.1420 (In Persian)
[44]  J. Davidson, Bubble formation at an orifice in a viscous liquid, Transaction of Institute of Chemical Engineering, 38 (1960) 144-154.
[45]  C.E. Brennen, C.E. Brennen, Fundamentals of multiphase flow, Cambridge university press, 2005.
[46]  F. Nicoud, F. Ducros, Subgrid-scale stress modelling based on the square of the velocity gradient tensor, Flow, turbulence and Combustion, 62(3) (1999) 183-200.
[47]  A.A. Al-Abidi, S.B. Mat, K. Sopian, M. Sulaiman, A.T. Mohammed, CFD applications for latent heat thermal energy storage: a review, Renewable and sustainable energy reviews, 20 (2013) 353-363.
[48]  S. Yakubov, T. Maquil, T. Rung, Experience using pressure-based CFD methods for Euler–Euler simulations of cavitating flows, Computers & Fluids, 111 (2015) 91-104.
[49]  O. Coutier-Delgosha, J. Reboud, Y. Delannoy, Numerical simulation of the unsteady behaviour of cavitating flows, International journal for numerical methods in fluids, 42(5) (2003) 527-548.
[50]  M. Dular, O. Coutier-Delgosha, Numerical modelling of cavitation erosion, International journal for numerical methods in Fluids, 61(12) (2009) 1388-1410
[51]  E. Goncalves, M. Champagnac, R. Fortes Patella, Comparison of numerical solvers for cavitating flows, International Journal of Computational Fluid Dynamics, 24(6) (2010) 201-216.
[52]  Adams N, Schmidt S. (2013). “ Bubble dynamics and shock waves”, , Heidelberg: Springer; p.235–56.
[53]  T. Wacławczyk, T. Koronowicz, Comparison of CICSAM and HRIC high-resolution schemes for interface capturing, Journal of theoretical and applied mechanics, 46 (2008) 325-345.
[54]  J.E. Ffowcs Williams, D.L. Hawkings, Sound generation by turbulence and surfaces in arbitrary motion, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 264(1151) (1969) 321-342.
[55]  H. Grosshans, A. Movaghar, L. Cao, M. Oevermann, R.-Z. Szász, L. Fuchs, Sensitivity of VOF simulations of the liquid jet breakup to physical and numerical parameters, Computers & Fluids, 136 (2016) 312323.
[56]  A. Vazquez, I. Leifer, R. Sánchez, Consideration of the dynamic forces during bubble growth in a capillary tube, Chemical Engineering Science, 65(13) (2010) 4046-4054.
[57]  L. d’Agostino, C.E. Brennen, Acoustical absorption and scattering cross sections of spherical bubble clouds, The Journal of the Acoustical Society of America, 84(6) (1988) 2126-2134.