[1] S.U.S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles”, FED-vol. 231/MD-vol. 66, Developments and Applications of Non- Newtonian Flows, ASME, New York; 99– 105, 1995.
[2] K. Khanafer; K. Vafai; M. Lightston, “Buoyancy- driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids”, Int. J. Heat Mass Transfer, 46, 3639– 3653, 2003.
[3] F. Talebi; A.H. Mahmoudi; M. Shahi, “Numerical study of mixed convection flows in a square lid-driven cavity utilizing nanofluid”, International Communications in Heat and Mass Transfer, 37 (1), 79– 90, 2010.
[4] P.K. Namburu; D.P. Kulkarni; D. Misra, D.K. Das, “Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture”, Exp. Thermal Fluid Sci, 32, 297– 402, 2007.
[5] S.P. Jang; S.U.S. Choi, “Effects of various parameters on nanofluid thermal conductivity”, ASME J. Heat Transfer, 129, 617– 623, 2007.
[6] C.T. Nguyen; F. Desgranges; G. Roy, N. Galanis; T. Mare; S. Boucher; H. Angue Minsta, “Temperature and particle-size dependent viscosity data for water-based nanofluids – hysteresis phenomenon”, Int. J. Heat Fluid Flow, 28, 1492– 1506, 2007.
[7] H. Angue Minsta; G. Roy; C.T. Nguyen; D. Doucet, “New temperature and conductivity data for water-based nanofluids”, Int. J. Therm. Sci, 48 (2), 363– 371, 2009.
[8] C.H. Chon; K.D. Kihm, S.P. Lee; S.U.S. Choi, “Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement”, Appl. Phys. Lett, 87, 153-107, 2005.
[9] E. Abu-Nada, “Effect of variable viscosity and thermal conductivity of Al2O3
–water nanofluid on heat transfer enhancement in water nanofluid on heat transfer enhancement in natural convection”, Int. J. Heat Fluid Flow 30, 679– 690, 2009.
[10] E. Abu-Nada, “Effects of variable viscosity and thermal conductivity of CuO-water nanofluid on heat transfer enhancement in natural convection”, Journal of Heat Transfer, 132, 052- 401, 2010.
[11] E. Abu-Nada; Z. Masoud, H. Oztop; A. Campo, “Effect of nanofluid variable properties on natural convection in enclosures”, Int. J. Thermal Sci., 49, 479-491, 2010.
[12] J.C. Maxwell-Garnett, “Colours in metal glasses and in metallic films”, Philos. Trans. Roy. Soc, 203, 385– 420, 1904.
[13] H.C. Brinkman, “The viscosity of concentrated suspensions and solutions”, J. Chem. Phys, 20, 571– 581, 1952.
[14] G. De Vahl Davis, “Natural convection of air in a square cavity, a benchmark numerical solution”, Int. J. Numer. Meth. Fluids, 3, 249– 264, 1983.
[15] G. Barakos; E. Mitsoulis, “Natural convection flow in a square cavity revisited: laminar and turbulent models with wall functions”, Int. J. Num. Meth. Fluids, 18, 695– 719, 1994.
[16] T. Fusegi; J.M. Hyun; K. Kuwahara; B. Farouk, “A numerical study of three dimensional natural convection in a differentially heated cubical enclosure”, Int. J. Heat Mass Transfer, 34, 1543– 1557, 1991.
[17] N.C. Markatos; K.A. Pericleous, “Laminar and turbulent natural convection in an enclosed cavity”, Int. J. Heat Mass Transfer, 27, 772– 775, 1984.