بازسازی تصاویر توموگرافی الکتریکی بر اساس روش تخمین پارامتر در انتقال حرارت معکوس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

2 گروه تبدیل انرژی، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

3 دانشگاه تهران*مهندسی مکانیک

چکیده

توموگرافی الکتریکی روشی غیرتماسی است که با اعمال ولتاژ یا جریان الکتریکی به هر سنسور و استفاده از یک الگوریتم بازسازی تصویر، ساختار داخلی جسم را شناسایی می‌کند. با وجود مزایایی همچون سادگی و ارزان قیمت بودن، تصاویر تولیدی در این روش دارای کیفیت پایینی است که علل اصلی آن نحوه اندازه‌گیری در سیستم توموگرافی و الگوریتم‌های بازسازی تصویر هستند. در این مقاله، از ایده بازسازی تصویر با استفاده از حل معادلات انتقال حرارت رسانشی به جای حل معادلات الکتریکی برای محاسبه توزیع رسانایی حرارتی استفاده شده است. بدین منظور با تغییر دمای سطح فعال، شارهای حرارتی عبوری از هر سطح به دلیل اختلاف دمای بین سطح فعال و سایر سطوح توسط سنسور محاسبه می‌شود، همچنین از الگوریتم لونبرگ-مارکوارت برای تخمین پارامترهای هندسی جسم مجهول و بازسازی تصویر در توموگرافی الکتریکی استفاده شده است. در این روش، سه مسأله برای بررسی قابلیت الگوریتم در تخمین هندسه مجهول انتخاب شد و نشان داده شد که این الگوریتم قادر به شناسایی هندسه مجهول است. با انجام آنالیز حساسیت برای بررسی تأثیر اغتشاش در تخمین هندسه نشان داده شد که با افزایش میزان اغتشاش، خطای ایجاد شده در تخمین شکل هندسی افزایش می‌یابد اما همچنان روش به ازای میزان اغتشاش اندازه‌گیری 30 درصد، در تخمین هندسه موفق عمل می‌کند. همچنین نتایج حاصل از انتخاب ترکیب‌های متفاوت از سطوح فعال برای ایجاد شار حرارتی نشان داد که علاوه بر مؤثر بودن سطوح فعال در افزایش دقت تخمین شکل، هندسه مجهول به ازای دو مرتبه اندازه‌گیری شار حرارتی قابل تخمین است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Reconstruction of Electrical Tomography Images based on Parameter Estimation Method in Inverse Heat Transfer

نویسندگان [English]

  • Saman Abbasian 1
  • Reza Maddahian 2
  • Farshad Kosari 3
1 Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
2 Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
3 school of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
چکیده [English]

Electrical tomography is a non-invasive method that is used to visualize the internal structure of an object by applying voltage or current and using an image reconstruction algorithm. In spite of some advantages such as simplicity and low cost, the images of tomography systems have low resolution and quality. In addition to system hardware that causes errors, the reason behind the low-quality images is the reconstruction algorithms. In this research, the idea of image reconstruction by solving the heat conduction equations instead of solving electrical equations is used and the thermal conductivity distribution is calculated. For this purpose, the temperature of the active surface is changed and the generated heat flux between the active and other surfaces is measured. The Levenberg-Marquardt algorithm is employed to estimate the geometric parameters of the unknown objects. Three different test cases are selected to investigate the capability of the proposed algorithm in the estimation of the unknown geometries. The results show that the proposed algorithm has the ability to estimate unknown shapes. Sensitivity analysis is also performed in order to examine the effect of noise in the detection of unknown geometry. The results show that with increasing the value of noise, the shape estimation error increases, but the shape has a good agreement with the original geometry. Also, the results of choosing different combinations of active surfaces to create thermal flux show that in addition to the effectiveness of active surfaces in increasing the accuracy of shape estimation, unknown geometry can be estimated using two thermal flux measurements.

کلیدواژه‌ها [English]

  • Electrical tomography
  • Image reconstruction
  • Inverse Heat Transfer
  • Levenberg–Marquardt algorithm
  • Parameter estimation
[1] T.I.M. Arubi, H.C. Yeung, Gamma radiation methods in characterizing horizontal and vertical multiphase flow, in:  OTC Brasil, Offshore Technology Conference, 2011.
[2] R. Hoffmann, G.W. Johnson, Measuring phase distribution in high pressure three-phase flow using gamma densitometry, Flow Measurement and Instrumentation, 22(5) (2011) 351-359.
[3] F. Barthel, M. Bieberle, D. Hoppe, M. Banowski, U. Hampel, Velocity measurement for two-phase flows based on ultrafast X-ray tomography, Flow Measurement and Instrumentation, 46 (2015) 196-203.
[4] A. Khana, Electrical impedance tomography, Nihon Rinsho, 49(4) (1991) 968-974. see also URL https://pdfs.semanticscholar.org/7bfc/03763a57e435c656f0cb8926653060354f56.pdf
[5] M. Cheney, D. Isaacson, J.C. Newell, Electrical impedance tomography, SIAM review, 41(1) (1999) 85-101.
[6] I. Frerichs, J. Hinz, P. Herrmann, G. Weisser, G. Hahn, M. Quintel, G. Hellige, Regional lung perfusion as determined by electrical impedance tomography in comparison with electron beam CT imaging, IEEE transactions on medical imaging, 21(6) (2002) 646-652.
[7] Y. Zou, Z. Guo, A review of electrical impedance techniques for breast cancer detection, Medical engineering & physics, 25(2) (2003) 79-90.
[8] M. Soleimani, O. Dorn, W.R. Lionheart, A narrowband level set method applied to EIT in brain for cryosurgery monitoring, IEEE transactions on biomedical engineering, 53(11) (2006) 2257-2264.
[9] T. Dyakowski, L.F. Jeanmeure, A.J. Jaworski, Applications of electrical tomography for gas–solids and liquid–solids flows—a review, Powder technology, 112(3) (2000) 174-192.
[10] I. Ismail, J. Gamio, S.A. Bukhari, W. Yang, Tomography for multi-phase flow measurement in the oil industry, Flow Measurement and Instrumentation, 16(2-3) (2005) 145-155.
[11] M.G. Rasteiro, R.C. Silva, F.A. Garcia, P.M. Faia, Electrical Tomography: a review of configurations and applications to particulate processes, KONA Powder and Particle Journal, 29 (2011) 67-80.
[12] W. Yang, Design of electrical capacitance tomography sensors, Measurement science and technology, 21(4) (2010) 042001.
[13] H.Y. Cao, X.M. Duan, H.X. Wang, Design of electrical capacitance tomography hardware system, in:  Advanced Materials Research, Trans Tech Publ, 2013, pp. 2311-2315.
[14] C.K. Seonga, J. Pusppanathana, R.A. Rahima, G.C. Loona, Y.S.-L. Susiapana, F.A. Phangb, M.H.F. Rahimanc, Hardware Development of Electrical Capacitance Tomography (ECT) System with Capacitance Sensor for Liquid Measurements, Jurnal Teknologi, 73(6) (2015).
[15] E. Mohamad, R. Rahim, M. Rahiman, H. Ameran, S. Muji, O. Marwah, Measurement and analysis of water/oil multiphase flow using Electrical Capacitance Tomography sensor, Flow Measurement and Instrumentation, 47 (2016) 62-70.
[16] K.J. Alme, S. Mylvaganam, Electrical capacitance tomography—sensor models, design, simulations, and experimental verification, IEEE Sensors Journal, 6(5) (2006) 1256-1266.
[17] M.N. ozisik, Heat Conduction, Second ed., Wiley, New York, 1993.
[18] W. Yang, L. Peng, Image reconstruction algorithms for electrical capacitance tomography, Measurement science and technology, 14(1) (2002) R1.
[19] Z. Cui, Q. Wang, Q. Xue, W. Fan, L. Zhang, Z. Cao, B. Sun, H. Wang, W. Yang, A review on image reconstruction algorithms for electrical capacitance/resistance tomography, Sensor Review, 36(4) (2016) 429-445.
[20] K. Li, S. Cong, A review of image reconstruction algorithms in electrical capacitance tomography, in:  Advanced Computational Intelligence (ICACI), 2018 Tenth International Conference on, IEEE, 2018, pp. 128-133.
[21] L. Peng, H. Merkus, B. Scarlett, Using regularization methods for image reconstruction of electrical capacitance tomography, Particle & Particle Systems Characterization: Measurement and Description of Particle Properties and Behavior in Powders and Other Disperse Systems, 17(3) (2000) 96-104.
[22] J. Jang, S. Lee, K. Kim, B. Choi, Modified iterative Landweber method in electrical capacitance tomography, Measurement Science and Technology, 17(7) (2006) 1909.
[23] C. Yan, D. Zhang, G. Lu, J. Dong, An Improved Algorithm Based on Landweber-Tikhonov Alternating Iteration for ECT Image Reconstruction, in:  Journal of Physics: Conference Series, IOP Publishing, 2018, pp. 012178.
[24] C.-H. Huang, Y. Jan-Yuan, An inverse problem in simultaneously measuring temperature-dependent thermal conductivity and heat capacity, International Journal of Heat and Mass Transfer, 38(18) (1995) 3433-3441.
[25] Y. Zhou, X.-x. Hu, Two methods for estimation of temperature-dependent thermal conductivity based on constant element approximation, International Journal of Thermal Sciences, 135 (2019) 104-116.
[26] S. Shah, A.K. Parwani, Estimation of Time-Varying Heat Source for One-Dimensional Heat Conduction by Conjugate Gradient Method, in:  Innovations in Infrastructure, Springer, 2019, pp. 329-339.
[27] C.-H. Huang, B.-H. Chao, An inverse geometry problem in identifying irregular boundary configurations, International Journal of Heat and Mass Transfer, 40(9) (1997) 2045-2053.
[28] H.Fazeli, M.Mirzaei, A.Ashrafizadeh, Shape Design in Heat Conduction Problems via Finite element method, in:  The 17th Annual International Conference on Mechanical Engineering ISME 2009, Tehran,Iran, 2009.(in Persian)
[29] M. Siavashi, F. Kowsary, E. Abbasi-Shavazi, Detection of flaws in a two-dimensional body through measurement of surface temperatures and use of conjugate gradient method, Computational Mechanics, 46(4) (2010) 597-607.
[30] M. Darroudi, F. Kowsary, Detection and Accurate Estimation of Geometrical Parameters of Defects on the Internal Surface of Pipes Using Inverse Heat Conduction Method, Modares Mechanical Engineering, 18(4), (2018) 211-222. (in Persian)
[31] M.B. Haddadi, R. Maddahian, A new algorithm for image reconstruction of electrical capacitance tomography based on inverse heat conduction problems, IEEE Sensors Journal, 16(6) (2016) 1786-1794.
[32] M.N. ozisik, H.R.B. Orlande, Inverse Heat Trasnfer, Taylor & Francis, New York, 2000.
[33] R.H. Bartels, J.C. Beatty, B.A. Barsky, An introduction to splines for use in computer graphics and geometric modeling, Morgan Kaufmann, 1995.
[34] M.B. Haddadi, Tomography Based on Inverse Heat Conduction Problems, Sharif university of technology,Tehran, 2010. (in Persian)
[35] J. Roe, Winding Around: The Winding Number in Topology, Geometry, and Analysis, American Mathematical Soc., 2015.