[1] S.K. Das; N. Putra; P. Thiesen; W. Roetzel, “Temperature dependence of thermal conductivity enhancement for nanofluids”, J.Heat Transfer, No. 125, pp. 567– 574, 2003.
[2] Y. He; Y. Jin; H. Chen; Y. Ding; D. Cang, H. Lu, “Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe”, Int. J. Heat Mass Transfer, No.50, pp. 2272– 2281, 2007.
[3] S.M.S. Murshed; K. Choong Leong; Ch. Yang; N.T. Nguyen, “Convective heat transfer characteristics of aquouse TiO2 nanofluid under laminar flow conditions”,Int. J. Nanoscience, Vol. 7, pp. 325– 331,
2008.
[4] W. Duangthongsuk; S. Wongwises, “An experimental study on the heat transfer performance and pressure drop of TiO2–water nanofluids flowing under a turbulent flow regime”, Int. J. Heat Mass Transfer, No.53, pp. 334– 344, 2010.
[5] H. Xie; Y. Li; W. Yu, “Intriguingly high convective heat transfer enhancement of nanofluid coolants in laminar flows”, Physics Letters A, No. 374, pp. 2566– 2568, 2010.
[6] S.M. Fotukian; M. Nasr Esfahany, “Experimental investigation of turbulent convective heat transfer of dilute γ-Al2O3/water nanofluid inside a circular tube”,Int. J. Heat Fluid Flow, No. 31, pp. 606– 612,
2010.
[7] B. Farajollahi; S.Gh. Etemad; M. Hojjat, “Heat transfer of nanofluids in a shell and tube heat exchanger”, Int. J. Heat Mass Transfer, No. 53, pp. 12– 17, 2010.
[8] A.R. Sajadi; M.H. Kazemi, “Investigation of turbulent convective heat transfer and pressure drop of TiO2/water nanofluid in circular tube”, Int. Commun. Heat Mass Transfer, Vol. 38, pp. 1474- 1478, 2011.
[9] M. Nasiri; S.Gh. Etemad; R. Bagheri, “Experimental heat transfer of nanofluid through an annular duct”, Int. Comm. Heat Mass Transfer, Vol. 38, pp. 958- 963, 2011.
[10] S.M.S. Murshed; K.C. Leong; C. Yang, “Enhanced thermal conductivity of TiO2–water based nanofluids”, Int. J. Thermal Sci.,Vol. 44, pp. 367- 373, 2005.
[11] D. Wu; H. Zhu; L. Wang; L. Liua, “Critical issues in nanofluids preparation,characterization and thermal conductivity”,Curr. Nanosci., Vol. 5, pp. 103– 112, 2009.
[12] B.C. Pak; Y.I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles”, Exp. Heat Transfer, Vol. 11, pp. 151– 170, 1998.
[13] Y. Xuan; W. Roetzel, “Conceptions for heat transfer correlation of nanofluids”, Int. J. Heat Mass Transfer, Vol. 43, pp. 3701–3707, 2000.
[14] M. Corcione, “Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids”, Energy Conversion and Management, Vol. 52, pp.789– 793, 2011.
[15] F.M. White, “Viscous Fluid Flow”, Third edition, McGraw Hill, New York, 2006.
[16] A. Bejan, “Convection Heat Transfer”, Third edition, John Wiley & Sons, Inc., New York, 2004.
[17] F. Kreith; D.Y. Goswami; The Mechanical Engineering Handbook Series, second edition, CRC PRESS, 2005.
[18] R.W. Powell; C.Y. Ho; P.E. Liley, “Thermal conductivity of selected materials”, United States Department of Commerce, National Bureau of standards, 1962.
[19] S.J. Smith; R. Stevens; Sh. Liu; G. Li; A. Navrotsky; J.B. Goates; B.F. Woodfield, “Heat capacities and thermodynamic functions of TiO2 anatase and rutile: Analysis of phase stability”, American Mineralogist, Vol. 94, pp. 236– 243, 2009.
[20] ED Palik; Handbook Optical Constants, V1, ISBN 0-12- 544423-6.
[21] A. Zamzamian; S. Nasseri Oskouie; A. Doosthoseini; A. Joneidi; M. Pazouki, “Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow”, Exp. Thermal Fluid Sci., Vol. 35, pp. 495– 502, 2011.
[22] Y. Yang; Z.G. Zhang; E.A. Grulke; W.B. Anderson; G. Wu, “Heat Transfer Properties of Nanoparticle-in-Fluid Dispersions (Nanofluids) in Laminar Flow”, Int. J. Heat Mass Transfer, Vol. 48, pp.1107– 1116, 2005.
[23] T.H. Nassan; S. Zeinali Heris; S.H. Noie, “A comparison of experimental heat transfer characteristics for Al2O3/water and CuO/water nanofluids in square cross-section duct”, Int. Commun. Heat Mass Transfer, Vol. 37, pp. 924– 928, 2010.
[24] R.S. Vajjha; D.K. Das; D.P. Kulkarni, “Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids”, Int. J. Heat Mass Transfer, Vol. 53, pp. 4607– 4618, 2010.
[25] D.P. Kulkarni; D. K. Das; R.S. Vajjha, “Application of nanofluids in heating buildings and reducing pollution”, Applied Energy, Vol. 86, 2566– 2573, 2009.
[26] H.W. Coleman; W.G. Steele, “Experimentation, validation, and uncertainty analysis for engineers”, Third edition, John Wiley & Sons, INC., 2009.
[27] امانی، جعفر، ” مطالعه تجربی تأثیر قطر نانوذرات، بر انتقال حرارت، نانوسیا آب اکسید تیتانیوم - “، پایان نامه کارشناسی . ارشد، دانشگاه کاشان، بهمی ماه 1351