مطالعه تجربی انتقال حرارت و افت فشار نانوسیال آب- اکسید تیتانیوم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان

2 استادیار، دانشکده مهندسی مکانیک، دانشگاه کاشان

چکیده

در این مقاله، انتقال حرارت و افت فشار نانوسیال آب- اکسید تیتانیوم در جریان مغشوش درون مبدل دو لوله‌ای هم مرکز به صورت تجربی بررسی شده است. نانوسیال با کسرهای حجمی 002/0، 01/0 و 02/0 تهیه شد و در اعداد رینولدز تقریبی 8000 تا 49000 مورد آزمایش قرار گرفت. برای این منظور یک مبدل دو لوله ای جریان مخالف طراحی و ساخته شده است. نتایج نشان داد که عدد ناسلت متوسط و افت فشار نانوسیال با افزایش کسر حجمی و یا عدد رینولدز افزایش می‌یابند. عدد ناسلت متوسط و افت فشار نانوسیال بیشتر از آب هستند. هر چند افت فشار نانوسیال با کسر حجمی 002/0 نزدیک به افت فشار آب است. درصد افزایش افت فشار نانوسیال نسبت به آب نشان داد که در تمامی آزمایش‌ها، افت فشار نانوسیال در عددهای بزرگ رینولدز افزایش کمتری نسبت به عددهای کوچک رینولدز دارد. برای کسر حجمی 002/0 با افزایش عدد رینولدز از افزایش عدد ناسلت متوسط کاسته می‌شود. برای دو کسر حجمی 01/0 و 02/0 عدد ناسلت متوسط افزایش (تقریباً) یکسانی در تمامی اعداد رینولدز دارد. بنابراین نانوسیال با کسر حجمی 002/0 برای عددهای رینولدز کوچک و نانوسیال با کسر حجمی 01/0 یا 02/0 در عددهای بزرگ رینولدز کارایی بهتری خواهند داشت.0.0020021ر

کلیدواژه‌ها


عنوان مقاله [English]

Experimental study on heat transfer and pressure drop of TiO2-water nanofluid

نویسندگان [English]

  • Jafar Amani 1
  • Ali Akbar Abbasian Arani 2
چکیده [English]

At current paper, heat transfer and pressure drop of TiO2-water nanofluid are investigated at nanoparticles volume fraction between 0.002 and 0.2, and Reynolds number between 8000 and 49000 experimetally in a double tube counter-flow heat exchanger. The results show that the Nusselt number and pressure drop of nanofluid increase by increasing nanoparticles volume fraction or Reynolds number, and the pressure drop of nanofluid is higher than the base fluid. The increament percentage in pressure drop of nanofluid compared with the base fluid is higher at lower Reynolds number. The enhancement value in the Nusselt number decreased with increasing the Reynolds number at 0.002 volume fraction. The Nusselt number increment value for nanoparticles volume fractions of 0.01 and 0.02 are identical for all Reynolds number. Therefore, more efficiency obtained at low Reynolds number by using nanofuid with 0.002-volume fraction, and at high Reynolds number for 0.01 and 0.02 volume fractions.

کلیدواژه‌ها [English]

  • Experimental study
  • TiO2-water nanofluid
  • Nusselt number
  • heat transfer
  • Pressure drop
  • forced convection
[1] S.K. Das; N. Putra; P. Thiesen; W. Roetzel, “Temperature dependence of thermal conductivity enhancement for nanofluids”, J.Heat Transfer, No. 125, pp. 567– 574, 2003.
[2] Y. He; Y. Jin; H. Chen; Y. Ding; D. Cang, H. Lu, “Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe”, Int. J. Heat Mass Transfer, No.50, pp. 2272– 2281, 2007.
[3] S.M.S. Murshed; K. Choong Leong; Ch. Yang; N.T. Nguyen, “Convective heat transfer characteristics of aquouse TiO2 nanofluid under laminar flow conditions”,Int. J. Nanoscience, Vol. 7, pp. 325– 331,
2008.
[4] W. Duangthongsuk; S. Wongwises, “An experimental study on the heat transfer performance and pressure drop of TiO2–water nanofluids flowing under a turbulent flow regime”, Int. J. Heat Mass Transfer, No.53, pp. 334– 344, 2010.
[5] H. Xie; Y. Li; W. Yu, “Intriguingly high convective heat transfer enhancement of nanofluid coolants in laminar flows”, Physics Letters A, No. 374, pp. 2566– 2568, 2010.
[6] S.M. Fotukian; M. Nasr Esfahany, “Experimental investigation of turbulent convective heat transfer of dilute γ-Al2O3/water nanofluid inside a circular tube”,Int. J. Heat Fluid Flow, No. 31, pp. 606– 612,
2010.
[7] B. Farajollahi; S.Gh. Etemad; M. Hojjat, “Heat transfer of nanofluids in a shell and tube heat exchanger”, Int. J. Heat Mass Transfer, No. 53, pp. 12– 17, 2010.
[8] A.R. Sajadi; M.H. Kazemi, “Investigation of turbulent convective heat transfer and pressure drop of TiO2/water nanofluid in circular tube”, Int. Commun. Heat Mass Transfer, Vol. 38, pp. 1474- 1478, 2011.
[9] M. Nasiri; S.Gh. Etemad; R. Bagheri, “Experimental heat transfer of nanofluid through an annular duct”, Int. Comm. Heat Mass Transfer, Vol. 38, pp. 958- 963, 2011.
[10] S.M.S. Murshed; K.C. Leong; C. Yang, “Enhanced thermal conductivity of TiO2–water based nanofluids”, Int. J. Thermal Sci.,Vol. 44, pp. 367- 373, 2005.
[11] D. Wu; H. Zhu; L. Wang; L. Liua, “Critical issues in nanofluids preparation,characterization and thermal conductivity”,Curr. Nanosci., Vol. 5, pp. 103– 112, 2009.
[12] B.C. Pak; Y.I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles”, Exp. Heat Transfer, Vol. 11, pp. 151– 170, 1998.
[13] Y. Xuan; W. Roetzel, “Conceptions for heat transfer correlation of nanofluids”, Int. J. Heat Mass Transfer, Vol. 43, pp. 3701–3707, 2000.
[14] M. Corcione, “Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids”, Energy Conversion and Management, Vol. 52, pp.789– 793, 2011.
[15] F.M. White, “Viscous Fluid Flow”, Third edition, McGraw Hill, New York, 2006.
[16] A. Bejan, “Convection Heat Transfer”, Third edition, John Wiley & Sons, Inc., New York, 2004.
[17] F. Kreith; D.Y. Goswami; The Mechanical Engineering Handbook Series, second edition, CRC PRESS, 2005.
[18] R.W. Powell; C.Y. Ho; P.E. Liley, “Thermal conductivity of selected materials”, United States Department of Commerce, National Bureau of standards, 1962.
[19] S.J. Smith; R. Stevens; Sh. Liu; G. Li; A. Navrotsky; J.B. Goates; B.F. Woodfield, “Heat capacities and thermodynamic functions of TiO2 anatase and rutile: Analysis of phase stability”, American Mineralogist, Vol. 94, pp. 236– 243, 2009.
[20] ED Palik; Handbook Optical Constants, V1, ISBN 0-12- 544423-6.
[21] A. Zamzamian; S. Nasseri Oskouie; A. Doosthoseini; A. Joneidi; M. Pazouki, “Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow”, Exp. Thermal Fluid Sci., Vol. 35, pp. 495– 502, 2011.
[22] Y. Yang; Z.G. Zhang; E.A. Grulke; W.B. Anderson; G. Wu, “Heat Transfer Properties of Nanoparticle-in-Fluid Dispersions (Nanofluids) in Laminar Flow”, Int. J. Heat Mass Transfer, Vol. 48, pp.1107– 1116, 2005.
[23] T.H. Nassan; S. Zeinali Heris; S.H. Noie, “A comparison of experimental heat transfer characteristics for Al2O3/water and CuO/water nanofluids in square cross-section duct”, Int. Commun. Heat Mass Transfer, Vol. 37, pp. 924– 928, 2010.
[24] R.S. Vajjha; D.K. Das; D.P. Kulkarni, “Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids”, Int. J. Heat Mass Transfer, Vol. 53, pp. 4607– 4618, 2010.
[25] D.P. Kulkarni; D. K. Das; R.S. Vajjha, “Application of nanofluids in heating buildings and reducing pollution”, Applied Energy, Vol. 86, 2566– 2573, 2009.
[26] H.W. Coleman; W.G. Steele, “Experimentation, validation, and uncertainty analysis for engineers”, Third edition, John Wiley & Sons, INC., 2009.
[27] امانی، جعفر، ” مطالعه تجربی تأثیر قطر نانوذرات، بر انتقال حرارت، نانوسیا آب اکسید تیتانیوم - “، پایان نامه کارشناسی . ارشد، دانشگاه کاشان، بهمی ماه 1351