[1] G.F. Christopher, S.L. Anna, Microfluidic methods for generating continuous droplet streams, Journal of Physics D: Applied Physics, 40(19) (2007) R319.
[2] W. Drenckhan, S. Cox, G. Delaney, H. Holste, D. Weaire, N. Kern, Rheology of ordered foams—on the way to discrete microfluidics, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 263(13) (2005) 52-64.
[3] D.C. Duffy, J.C. McDonald, O.J. Schueller, G.M. Whitesides, Rapid prototyping of microfluidic systems in poly (dimethylsiloxane), Analytical chemistry, .4894-4794 )8991( )32(07
[4] G.G. Bernard, L. Holm, Effect of foam on permeability of porous media to gas, Society of Petroleum Engineers Journal, 4(03) (1964) 267-274.
[5] L. Holm, The mechanism of gas and liquid flow through porous media in the presence of foam, Society of Petroleum Engineers Journal, 8(04) (1968) 359-369.
[6] J. Hanssen, T. Holt, L. Surguchev, Foam processes: An assessment of their potential in North Sea reservoirs based on a critical evaluation of current field experience, in: SPE/DOE Improved Oil Recovery Symposium, Society of Petroleum Engineers, 1994.
[7] L.L. Schramm, Foam sensitivity to crude oil in porous media, in, ACS Publications, 1994.
[8] W.R. Rossen, Foams in enhanced oil recovery, Foams: Theory, Measurements and Applications, 57 (1996) 413-464.
[9] R. Farajzadeh, A. Andrianov, P. Zitha, Investigation of immiscible and miscible foam for enhancing oil recovery, Industrial & Engineering chemistry research, 49(4) (2009) 1910-1919.
[10] G.J. Hirasaki, C.A. Miller, M. Puerto, Recent advances in surfactant EOR, in: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, 2008.
[11] R. Farajzadeh, A. Andrianov, R. Krastev, G. Hirasaki, W.R. Rossen, Foam–oil interaction in porous media: implications for foam assisted enhanced oil recovery, Advances in colloid and interface science, 183 (2012) 1-13.
[12] K. Ma, R. Liontas, C.A. Conn, G.J. Hirasaki, S.L. Biswal, Visualization of improved sweep with foam in heterogeneous porous media using microfluidics, Soft Matter, 8(41) (2012) 10669-10675.
[13] T. Thorsen, R.W. Roberts, F.H. Arnold, S.R. Quake, Dynamic pattern formation in a vesicle-generating microfluidic device, Physical review letters, 86(18) (2001) 4163.
[14] P. Guillot, A. Colin, Stability of parallel flows in a microchannel after a T junction, Physical Review E72(6)(2005)066301.
[15] P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up, Lab on a Chip, 6(3) (2006) 437-446.
[16] C.S. Smith, On blowing bubbles for Bragg’s dynamic crystal model, Journal of Applied Physics, 20(6) (1949) .136-136
[17] A.M. Ganán-Calvo, J.M. Gordillo, Perfectly monodisperse microbubbling by capillary flow focusing, Physical review letters, 87(27) (2001) 274501.
[18] A.M. Gañán-Calvo, M.A. Herrada, P. Garstecki, Bubbling in unbounded coflowing liquids, Physical review letters, 96(12) (2006) 124504.
[19] S.L. Anna, N. Bontoux, H.A. Stone, Formation of dispersions using “flow focusing” in microchannels, Applied physics letters, 82(3) (2003) 364-366.
[20] P. Garstecki, I. Gitlin, W. DiLuzio, G.M. Whitesides, E. Kumacheva, H.A. Stone, Formation of monodisperse bubbles in a microfluidic flow-focusing device, Applied Physics Letters, 85(13) (2004) 2649-2651.
[21] M. Hashimoto, G.M. Whitesides, Formation of Bubbles in a Multisection Flow‐Focusing Junction, Small, 6(9) (2010) 1051-1059.
[22] P. Garstecki, H.A. Stone, G.M. Whitesides, Mechanism for flow-rate controlled breakup in confined geometries: A route to monodisperse emulsions, Physical review letters, 94(16) (2005) 164501.
[23] B. Dollet, W. Van Hoeve, J.-P. Raven, P. Marmottant, M. Versluis, Role of the channel geometry on the bubble pinch-off in flow-focusing devices, Physical review letters, 100(3) (2008) 034504.
[24] P. Garstecki, M.J. Fuerstman, G.M. Whitesides, Nonlinear dynamics of a flow-focusing bubble generator: An inverted dripping faucet, Physical review letters, 94(23) (2005) 234502.
[25] J.-P. Raven, P. Marmottant, F. Graner, Dry microfoams: formation and flow in a confined channel, The European Physical Journal B-Condensed Matter and Complex Systems, 51(1) (2006) 137-143.
[26] P. Garstecki, G.M. Whitesides, Flowing crystals: nonequilibrium structure of foam, Physical review letters, 97(2) (2006) 024503.
[27] T. Beatus, T. Tlusty, R. Bar-Ziv, Phonons in a onedimensional microfluidic crystal, Nature Physics, 2(11) (2006) 743.
[28] J.-P. Raven, P. Marmottant, Microfluidic crystals: dynamic interplay between rearrangement waves and flow, Physical review letters, 102(8) (2009) 084501.
[29] F.P. Bretherton, The motion of long bubbles in tubes, Journal of Fluid Mechanics, 10(2) (1961) 166-188.
[30] I. Cantat, N. Kern, R. Delannay, Dissipation in foam flowing through narrow channels, EPL (Europhysics Letters), 65(5) (2004) 726.