[1] K.-Y. Law, Definitions for Hydrophilicity, Hydrophobicity, and Superhydrophobicity: Getting the Basics Right, The Journal of Physical Chemistry Letters, 5(4) (2014) 686-688.
[2] K.A. Stevens, J. Crockett, D.R. Maynes, B.D. Iverson, Two-phase flow pressure drop in superhydrophobic channels, International Journal of Heat and Mass Transfer, 110 (2017) 515-522.
[3] D. Sebastian, C.-W. Yao, I. Lian, Mechanical durability of engineered superhydrophobic surfaces for anticorrosion, Coatings, 8(5) (2018) 162.
[4] D.K. Sarkar, M. Farzaneh, Superhydrophobic Coatings with Reduced Ice Adhesion, Journal of Adhesion Science and Technology, 23(9) (2009) 1215-1237.
[5] E. Lauga, H.A. Stone, Effective slip in pressure-driven Stokes flow, Journal of Fluid Mechanics, 489 (2003) 55-77.
[6] M.B. Martell, J.B. Perot, J.P. Rothstein, Direct numerical simulations of turbulent flows over superhydrophobic surfaces, Journal of Fluid Mechanics, 620 (2009) 31-41.
[7] C. Teo, B. Khoo, Flow past superhydrophobic surfaces containing longitudinal grooves: effects of interface curvature, Microfluidics and Nanofluidics, 9(2-3) (2010) 499-511.
[8] C. Teo, B. Khoo, Effects of interface curvature on Poiseuille flow through microchannels and microtubes containing superhydrophobic surfaces with transverse grooves and ribs, Microfluidics and nanofluidics, 17(5) (2014) 891-905.
[9] Y. Chen, W. Ren, X. Mu, F. Zhang, Y. Xu, Flow inside Micro-Channel Bounded by Superhydrophobic Surface with Eccentric Micro-Grooves, World Academy of Science, Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 11(9) (2017) 1567-1572.
[10] M. Kharati-Koopaee, M.R. Akhtari, Numerical study of fluid flow and heat transfer phenomenon within microchannels comprising different superhydrophobic structures, International Journal of Thermal Sciences, 124 (2018) 536-546.
[11] A. Gaddam, A. Agrawal, S.S. Joshi, M.C. Thompson, Slippage on a particle-laden liquid-gas interface in textured microchannels, Physics of Fluids, 30(3) (2018) 032101.
[12] J. Davies, D. Maynes, B. Webb, B. Woolford, Laminar flow in a microchannel with superhydrophobic walls exhibiting transverse ribs, Physics of fluids, 18(8) (2006) 087110.
[13] B. Woolford, D. Maynes, B. Webb, Liquid flow through microchannels with grooved walls under wetting and superhydrophobic conditions, Microfluidics and nanofluidics, 7(1) (2009) 121-135.
[14] A. Gaddam, A. Agrawal, S.S. Joshi, M.Thompson, Utilization of cavity vortex to delay the wetting transition in one-dimensional structured microchannels, Langmuir, 31(49) (2015) 1337313384.
[15] G.A. Bird, Molecular gas dynamics, NASA STI/Recon Technical Report A, 76 (1976).
[16] G. Bird, Molecular gas dynamics and the direct simulation monte carlo of gas flows, Clarendon, Oxford, 508 (1994) 128.
[17] W. Wagner, A convergence proof for Bird’s direct simulation Monte Carlo method for the Boltzmann equation, Journal of Statistical Physics, 66(3) (1992) 1011-1044.
[18] K. Nanbu, Direct simulation scheme derived from the Boltzmann equation. I. Monocomponent gases, Journal of the Physical Society of Japan, 49(5) (1980) 2042-2049.
[19] A. Amiri-Jaghargh, A. Babakhani, Investigation of shear stress on superhydrophobic surfaces considering gaseous flow in microcavities using DSMC-IP method, in: 17th Conference on Fluid Dynamics (FD2017), Shahrood University of Technology, 2017.(In Persian)
[20] D. Hash, H. Hassan, A decoupled DSMC/NavierStokes analysis of a transitional flow experiment, in: 34th aerospace sciences meeting and exhibit, 1996, pp. 353.
[21] D. Hash, H. Hassan, Assessment of schemes for coupling Monte Carlo and Navier-Stokes solution methods, Journal of Thermophysics and Heat Transfer, 10(2) (1996) 242-249.
[22]D. Hash, H. Hassan, D. Hash, H. Hassan, Twodimensional coupling issues of hybrid DSMC/NavierStokes solvers, in: 32nd thermophysics conference, 1997, pp. 2507.
[23] O. Aktas, N. Aluru, A combined continuum/DSMC technique for multiscale analysis of microfluidic filters, Journal of Computational Physics, 178(2) (2002) 342-372.
[24] M. Darbandi, E. Roohi, A hybrid DSMC/NavierStokes frame to solve mixed rarefied/nonrarefied hypersonic flows over nano-plate and micro-cylinder, Internationa Journal for Numerical Methods in Fluids, 72(9) (2013) 937-966.
[25] S. Tiwari, A. Klar, S. Hardt, A. Donkov, Coupled solution of the Boltzmann and Navier–Stokes equations in gas–liquid two phase flow, Computers & Fluids, 71 (2013) 283-296.
[26] J. Fan, C. Shen, Statistical simulation of low-speed unidirectional flows in transition regime, in: International symposium on rarefied gas dynamics, 1999.
[27]J. Fan, C. Shen, Statistical simulation of low-speed rarefied gas flows, Journal of Computational Physics, 167(2) (2001) 393-412.
[28] Q. Sun, I.D. Boyd, G.V. Candler, A hybrid continuum/particle approach for modeling subsonic, rarefied gas flows, Journal of Computational Physics, 194(1) (2004) 256-277.
[29] B. Gruncell, Superhydrophobic surfaces and their potential application to hydrodynamic drag reduction, PhD thesis, University of Southampton, 2014.
[30] E. Lobaton, T. Salamon, Computation of constant mean curvature surfaces: Application to the gas–liquid interface of a pressurized fluid on a superhydrophobic surface, Journal of colloid and interface science, .891-481 )7002( )1(413
[31] C. Ybert, C. Barentin, C. Cottin-Bizonne, P. Joseph, L. Bocquet, Achieving large slip with superhydrophobic surfaces: Scaling laws for generic geometries, Physics of fluids, 19(12) (2007) 123601.
[32] A. Babakhani, Developing a DSMC code for simulation of rarefied flow in lid–driven micro/ nano cavities using IP method, Master thesis, Razi University, 2018. (In Persian)
[33] A. Amiri-Jaghargh, Numerical Investigation of Rarefied Gas Flows in Micro/Nano Geometries using Navier-Stokes Equations and DSMC Approach, PhD thesis, Ferdowsi University of Mashhad, 2014. (In Persian)
[34] A. Amiri-Jaghargh, E. Roohi, S. Stefanov, H. Nami, H. Niazmand, DSMC simulation of micro/nano flows using SBT–TAS technique, Computers & Fluids, 102 (2014) 266-276.
[35] A. Amiri-Jaghargh, E. Roohi, H. Niazmand, S. Stefanov, DSMC simulation of low knudsen micro/ nanoflows using small number of particles per cells, Journal of Heat Transfer, 135(10) (2013) 101008.
[36] Q. Sun, Information preservation methods for modeling micro-scale gas flows, PhD thesis, University of Michigan, 2003.
[37] F.J. Alexander, A.L. Garcia, B.J. Alder, Cell size dependence of transport coefficients in stochastic particle algorithms, Physics of Fluids, 10(6) (1998) 1540-1542.
[38] C.-H. Choi, K.J.A. Westin, K.S. Breuer, Apparent slip flows in hydrophilic and hydrophobic microchannels, Physics of fluids, 15(10) (2003) 2897-2902.
[39] B. John, X.-J. Gu, D.R. Emerson, Investigation of heat and mass transfer in a lid-driven cavity under nonequilibrium flow conditions, Numerical Heat Transfer, Part B: Fundamentals, 58(5) (2010) 287-303.