[1] M.Z. Bazant, T.M. Squires, Induced-charge electrokinetic phenomena: theory and microfluidic applications, Physical Review Letters, 92(6) (2004) .101660
[2] M.Z. Bazant, K. Thornton, A. Ajdari, Diffuse-charge dynamics in electrochemical systems, Physical review E, 70(2) (2004) 021506.
[3] N. Pamme, Magnetism and microfluidics, Lab on a Chip, 6(1) (2006) 24-38.
[4] T. Simonova, V. Shilov, O. Shramko, Low-frequency dielectrophoresis and the polarization interaction of uncharged spherical particles with an induced Debye atmosphere of arbitrary thickness, Colloid Journal, 63(1) (2001) 108-115.
[5] D.N. Ankrett, D. Carugo, J. Lei, P. Glynne-Jones, P.A. Townsend, X. Zhang, M. Hill, The effect of ultrasound-related stimuli on cell viability in microfluidic channels, Journal of nanobiotechnology, 11(1) (2013) 20.
[6] A. Doinikov, Acoustic radiation pressure on a rigid sphere in a viscous fluid, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 447(1931) (1994) 447-466.
[7] A.A. Doinikov, Acoustic radiation pressure on a compressible sphere in a viscous fluid, Journal of Fluid Mechanics, 267 (1994) 1-22.
[8] L.V. King, On the acoustic radiation pressure on spheres, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 147(861) (1934) 212-240.
[9] S. Danilov, M. Mironov, Mean force on a small sphere in a sound field in a viscous fluid, The Journal of the Acoustical Society of America, 107(1) (2000) 143153.
[10] R. Barnkob, P. Augustsson, T. Laurell, H. Bruus, Acoustic radiation-and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane, Physical Review E, 86(5) (2012) 056307.
[11] X. Zheng, R.E. Apfel, Acoustic interaction forces between two fluid spheres in an acoustic field, The Journal of the Acoustical Society of America, 97(4) (1995) 2218-2226.
[12] A.A. Doinikov, Acoustic radiation force on a spherical particle in a viscous heat-conducting fluid. I. General formula, The Journal of the Acoustical Society of America, 101(2) (1997) 713-721.
[13] A.A. Doinikov, Acoustic radiation force on a spherical particle in a viscous heat-conducting fluid. III. Force on a liquid drop, The Journal of the Acoustical Society of America, 101(2) (1997) 731-740.
[14] A.A. Doinikov, Acoustic radiation force on a spherical particle in a viscous heat-conducting fluid. II. Force on a rigid sphere, The Journal of the Acoustical Society of America, 101(2) (1997) 722-730.
[15] T. Hasegawa, K. Saka, N. Inoue, K. Matsuzawa, Acoustic radiation force experienced by a solid cylinder in a plane progressive sound field, The Journal of the Acoustical Society of America, 83(5) (1988) 1770-1775.
[16] T. Hasegawa, K. Yosioka, Acoustic‐radiation force on a solid elastic sphere, The Journal of the Acoustical Society of America, 46(5B) (1969) 1139-1143.
[17] K. Yosioka, Y. Kawasima, Acoustic radiation pressure on a compressible sphere, Acta Acustica united with Acustica, 5(3) (1955) 167-173.
[18] H. Bruus, Acoustofluidics 7: The acoustic radiation force on small particles, Lab on a Chip, 12(6) (2012) 1014-1021.
[19] L. Gor’Kov, On the forces acting on a small particle in an acoustical field in an ideal fluid, in: Sov. Phys. Dokl., 1962, pp. 773-775.
[20] J.T. Karlsen, H. Bruus, Forces acting on a small particle in an acoustical field in a thermoviscous fluid, Physical Review E, 92(4) (2015) 043010.
[21] M. Settnes, H. Bruus, Forces acting on a small particle in an acoustical field in a viscous fluid, Physical Review E, 85(1) (2012) 016327.
[22] G.T. Silva, H. Bruus, Acoustic interaction forces between small particles in an ideal fluid, Physical Review E, 90(6) (2014) 063007.
[23] L. Rayleigh, XXXIV. On the pressure of vibrations, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 3(15) (1902) 338-346.
[24] A.A. Doinikov, Acoustic radiation forces: Classical theory and recent advances, Recent Res Devel Acoustics, 1 (2003) 39-67.
[25] T. Embleton, Mean force on a sphere in a spherical sound field. II.(Experimental), The Journal of the Acoustical Society of America, 26(1) (1954) 46-50.
[26] T. Embleton, The radiation force on a spherical obstacle in a cylindrical sound field, Canadian Journal of Physics, 34(3) (1956) 276-287.
[27] W.L. Nyborg, Radiation pressure on a small rigid sphere, The Journal of the Acoustical Society of America, 42(5) (1967) 947-952.
[28 ] T. Embleton, Mean force on a sphere in a spherical sound field. I.(Analytical), The Journal of the Acoustical Society of America, 26(1) (1954) 45-40.
[29] T. Hasegawa, Comparison of two solutions for acoustic radiation pressure on a sphere, The Journal of the Acoustical Society of America, 61(6) (1977) 1445-1448.
[30] T. Hasegawa, Acoustic radiation force on a sphere in a quasistationary wave field-experiment, The Journal of the Acoustical Society of America, 65(1) (1979) 41-44.
[31] W. Wei, D. B. Thiessen, P. L. Marston, Acoustic radiation force on a compressible cylinder in a standing wave, The Journal of the Acoustical Society of America, 116(1) (2004) 201-208.
[32] J. Wu, G. Du, S. S. Work, D. M. Warshaw, Acoustic radiation pressure on a rigid cylinder: An analytical theory and experiments, The Journal of the Acoustical Society of America, 87(2) (1990) 581-586.
[33] G. Gaunaurd, M. Werby, Sound scattering by resonantly excited, fluid-loaded, elastic spherical shells, The Journal of the Acoustical Society of America, 90(5) (1991) 2536-2550.
[34] T. Hasegawa, Y. Hino, A. Annou, H. Noda, M. Kato, N. Inoue, Acoustic radiation pressure acting on spherical and cylindrical shells, The Journal of the Acoustical Society of America, 93(1) (1993) 154-161.
[35] F. Mitri, Acoustic radiation force acting on elastic and viscoelastic spherical shells placed in a plane standing wave field, Ultrasonics, 43(8) (2005) 681-691.
[36] F. Mitri, Acoustic radiation force acting on absorbing spherical shells, Wave Motion, 43, (1) (2005) 12-19.
[37] F. Mitri, Calculation of the acoustic radiation force on coated spherical shells in progressive and standing plane waves, Ultrasonics, 44(3) (2006) 244-258.
[38] P. L. Marston, D. B. Thiessen, Manipulation of fluid objects with acoustic radiation pressure, Annals of the New York Academy of Sciences, 1027(1) (2004) 414434.
[39] M. J. Marr-Lyon, D. B. Thiessen, P. L. Marston, Passive stabilization of capillary bridges in air with acoustic radiation pressure, Physical review letters, 86(11) (2001) 2293.
[40] S. M. Hasheminejad, R. Sanaei, Acoustic radiation force and torque on a solid elliptic cylinder, Journal of Computational Acoustics, 15(03) (2007) 377-399.
[41] K. M. Lim, S. Sepehrirahnama, Multipole expansion method for calculation of acoustic radiation force on non-spherical objects, Acoustofluidics conference, 2013.
[42] P. L. Marston, W. Wei, D. B. Thiessen, Acoustic radiation force on elliptical cylinders and spheroidal objects in low frequency standing waves, AIP Conference Proceedings, 838(1) (2006) 495-499.
[43] F. Mitri, Acoustic radiation force on a rigid elliptical cylinder in plane (quasi) standing waves, Journal of Applied Physics, 118(21) (2015) 214903.
[44] F. B. Wijaya, K. M. Lim, Numerical calculation of acoustic radiation force and torque acting on rigid non-spherical particles, Acta Acustica united with Acustica, 101(3) (2015) 531-542.
[45] M. Hill, R. J. Townsend, N. R. Harris, Modelling for the robust design of layered resonators for ultrasonic particle manipulation, Ultrasonics, 48(6-7) (2008) .825-125
[46] K. A. Fisher, R. Miles, Modeling the acoustic radiation force in microfluidic chambers, The Journal of the Acoustical Society of America, 123(4) (2008) .5681-2681
[47] D. Haydock, Lattice Boltzmann Simulations of the Time-Averaged Forces on a Cylinder in a Sound Field, Journal of Physics A: Mathematical and General, 38(15) (2005) 32-65.
[48] F. Cai, L. Meng, C. Jiang, Y. Pan, H. Zheng, Computation of the Acoustic Radiation Force Using the Finite-Difference Time-Domain Method, The Journal of the Acoustical Society of America, 128(4) (2010) 1617-22.
[49] J. Wang, J. Dual, Theoretical and numerical calculation of the acoustic radiation force acting on a circular rigid cylinder near a flat wall in a standing wave excitation in an ideal fluid, Ultrasonics, 52(3) (2012) 325-332.
[50] P. Glynne-Jones, P. P. Mishra, R. J. Boltryk, M. Hill, Efficient Finite Element Modeling of Radiation Forces on Elastic Particles of Arbitrary Size and Geometry, The Journal of the Acoustical Society of America, 133(4) (2013) 1885-1893.
[51] A. Garbin, I. Leibacher, P. Hahn, H. Le Ferrand, A. Studart, J. DualJDM, Acoustophoresis of disk-shaped microparticles: A numerical and experimental study of acoustic radiation forces and torques, The Journal of the Acoustical Society of America, 61(3) (1978) 391418.
[52] J. Lighthill, Acoustic streaming, Journal of sound and vibration, 61(3) (1978) 391-418.
[53] P. J. Westervelt, The theory of steady forces caused by sound waves, Journal of sound and vibration, 61(3) (1978) 391-418.
[54] D. Haydock, J. M. Yeomans, Lattice Boltzmann simulations of acoustic streaming, Journal of Physics A: Mathematical and General, 34(25) (2001) 52015213.
[55] S. Annamalai, S. Balachandar, M. K. Parmar, Mean force on a finite-sized spherical particle due to an acoustic field in a viscous compressible medium, Physical Review E, 89(5) (2014) 053008.
[56] W. Ran, J. R. Saylor, The directional sensitivity of the acoustic radiation force to particle diameter, The Journal of the Acoustical Society of America, 137(6) (2015) 3288-3298.
[57] S. Sepehrirahnama, F. S. Chau, K. M. Lim, Numerical calculation of acoustic radiation forces acting on a sphere in a viscous fluid, Physical Review E, 92(6) (2015) 063309.
[58] J. Lighthill, The Absorption of Sound in Suspensions and Emulsions. I. Water Fog in Air, The Journal Of The Acoustical Society Of America, 61(3) (1953) 553565.
[59] J. R. Allegra, S. A. Hawley, Attenuation of Sound in Suspensions and Emulsions: Theory and Experiments, The Journal Of The Acoustical Society Of America, 51(5) (1971) 1545-1564.
[60] C. P. Lee, T. G. Wang, Acoustic radiation force on a heated sphere including effects of heat transfer and acoustic streaming, The Journal Of The Acoustical Society Of America, 83(4) (1988) 1324-1331.
[61] C. P. Lee, T. G. Wang, The Acoustic Radiation Force on a Heated (or Cooled) Rigid Sphere-Theory, The Journal Of The Acoustical Society Of America, 75(1) (1984) 88-96.
[62] S. M. Woodside, B. D. Bowen, J. M. Piret, Measurement of ultrasonic forces for particle–liquid separations, AIChE journal, 43(7) (1997) 1727-1736. [63] V. Bjerknes, Fields of force, General Books, 1906.
[64] L. A. Crume, Bjerknes forces on bubbles in a stationary sound field, The Journal Of The Acoustical Society Of America, 57(6) (1975) 1727-1736.
[65] T. F. W. Embelton, Mutual Interaction between Two Acoustical Society of America, 34(11) (1962) 1714-1720.
[66]B. E. Nemtsov, Effects of the radiation interaction of bubbles in a fluid, Pis’ma Zh. Tekh. Fiz., 9 (1983) 858-861.
[67] A. A. Doinikov, S. T. Zavtrak, Radiation forces between two bubbles in a compressible liquid, The Journal Of The Acoustical Society Of America, 102(3) (1997) 1424-1431.
[68] A. A. Doinikov, S. T. Zavtrak, Bubble and a solid particle in a sound field, Ultrasonics, 34(8) (1996) 807-815.
[69] X. Zheng, R. E. Apfel, Acoustic interaction forces between two fluid spheres in an acoustic field, The Journal Of The Acoustical Society Of America, 97(4) (1995) 2218-2226.
[70] A. A. Doinikov, Acoustic radiation interparticle forces in a compressible fluid, Journal of Fluid Mechanics, 444 (2001) 1-21.
[71] S. Sepehrirahnama, K. M. Lim, F. S. Chao, Numerical study of interparticle radiation force acting on rigid spheres in a standing wave, The Journal of the Acoustical Society of America, 137(5), (2015) 2614-2622.
[72] J. H. Lopes, M. Azarpeyvand, G. T. Silva, Acoustic Interaction Forces and Torques Acting on Suspended Spheres in an Ideal Fluid, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 63(1) (2016) 186-197.
[73] S. Sepehrirahnama, F. S. Chau, K. M. Lim, Effects of viscosity and acoustic streaming on the interparticle radiation force between rigid spheres in a standing wave, Physical Review E, 93(2) (2016) 023307.
[74] F. B. Wijaya, S. Sepehrirahnama, K. M. Lim, Interparticle force and torque on rigid spheroidal particles in acoustophoresis, Wave Motion, 81 (2018) 28-45.
[75] L. Rayleigh, On the Circulation of Air Observed in Kundt’s Tubes, and on some Allied Acoustical Problems, Philosophical Transactions of the Royal Society A, 175(3) (1884) 1-21.
[76] H. Schlichting, Berechnung ebener periodischer Grenzschichtströmungen(Calculation of Plane Periodic Boundary Layer Streaming), Physikalische Zeitschrift, 33(8) (1932) 327-335.
[77] S. Boluriaan, P. J. Morris, Acoustic streaming: from Rayleigh to today, International Journal of aeroacoustics, 2(3) (2003) 255-292.
[78] P. J. Westervelt, The Theory of Steady Rotational Flow Generated by a Sound Field, The Journal of Acoustical Society of America, 25(1) (1953) 60-67.
[79] W. L. M. Nyborg, Acoustic streaming, Physical Acoustics, 2 (1965) 265-331.
[80] W. L. Nyborg, Acoustic streaming near a boundary, The Journal of Acoustical Society of America, 30(4) (1958) 329-339.
[81] Q. Qi, The effect of compressibility on acoustic streaming near a rigid boundary for a plane traveling wave, The Journal of Acoustical Society of America, 94 (2) (1993) 1090-1098.
[82] M. F. Hamilton, Y. A. Ilinskii, E. A. Zabolotskaya, Acoustic streaming generated by standing waves in two-dimensional channels of arbitrary width, The Journal of Acoustical Society of America, 113(1) (2003) 153-160.
[83] M. K. Aktas, B. Farouk, Numerical simulation of acoustic streaming generated by finite-amplitude resonant oscillations in an enclosure, The Journal of Acoustical Society of America, 116(5) (2004) 2822-2831.
[84] P. B. Muller, R. Barnkob, M. J. H. Jensen, H. Bruus, A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaminginduced drag forces, Lab on a Chip, 12(22) (2012) 4617-4627.
[85] P. B. Muller, M. Rossi, A. G. Marin, R. Barnkob, P. Augustsson, T. Laurell, C. J. K ahler,. Bruus, Ultrasound-induced acoustophoretic motion of microparticles in three dimensions, Physical Review E, 88(2) (2013) 023006.
[86] P. B. Muller, H. Bruus, Numerical study of thermoviscous effects in ultrasound-induced acoustic streaming in microchannels, Physical Review E, 90(4) (2014) 043016.
[87] A. A. Doinikov, P. Thibault, P. Marmottant, Acoustic streaming induced by two orthogonal ultrasound standing waves in a microfluidic channel, Ultrasonics, 87 (2018) 7-19.
[88] W. Qiu, J. T. Karlsen, H. Bruus, P. Augustsson, Characterization of Acoustic Streaming in Gradients of Density and Compressibility, arXiv preprint (2018) 1810.07142.
[89] J. T. Karlsen, W. Qiu, P. Augustsson, H. Bruus, Acoustic streaming and its suppression in inhomogeneous fluids, Physical review letters, 120(5) (2018) 054501.