مروری بر مطالعات در زمینه حرکت ذرات تحت اثر امواج آکوستیکی در سیستم های میکروفلویدیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان، اصفهان، ایران

2 دانشکده مهندسی مکانیک، دانشگاه ملی سنگاپور، سنگاپور

چکیده

استفاده از امواج آکوستیکی برای کنترل و دست‌کاری ذرات معلق در سیال، توجه ویژه‌ای را در دو دهه‌ی اخیر ً به دو صورت می‌تواند تحت به خود جلب کرده است. انتشار امواج آکوستیکی در محیط سیال، ذرات معلق در آن را عمدتا تأثیر قرار دهد. اثر اولیه انتشار موج به صورت مستقیم بر ذرات عمل کرده و موجب اعمال نیرویی از طرف سیال بر آنها می‌شود. در سیال ویسکوز با توجه به تضعیف موج و ایجاد گرادیان‌های سرعت ناشی از وجود ویسکوزیته، جریان‌هایی در سیال شکل می‌گیرد که می‌توانند به صورت غیرمستقیم بر ذرات اثرگذار باشند. با توجه به کاربرد این تکنولوژی در زمینه‌های پزشکی و بیولوژی و پیچیدگی کارهای تجربی آزمایشگاهی در ابعاد میکرومتر، نیاز مبرمی به مطالعات تحلیلی و بینش تئوری در این موضوع احساس می‌گردد. موضوع مقاله حاضر، مروری بر مطالعات تحلیلی انجام شده در رابطه با مکانیزم‌های مؤثر بر حرکت ذرات تحت تأثیر امواج آکوستیکی انتشاریافته در محیط سیال در ابعاد میکرومتر است. در این مقاله تاریخچه‌ای از نظریه‌های ابتدایی محاسبه نیروهای تابشی آکوستیکی و جریان آکوستیکی و روند پیشرفت این نظریه‌ها تا زمان حاضر ارائه شده است. همچنین، نقدی بر نتایج بدست آمده از پژوهش‌های گذشته، مشکلات و کمبودها و میزان تأثیر پارامترهای مختلف در برآورد این نتایج ارائه شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review of Studies on the Motion of Particles Under the Influence of Acoustic Waves in Microfluidic Systems

نویسندگان [English]

  • Sayed Mostafa Zareei 1
  • Mostafa Jamshidian 1
  • Shahrokh Sepehrirahnama 2
  • Saeed Ziaei-Rad 1
1 Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
2 Department of Mechanical Engineering, National University of Singapore, Singapore
چکیده [English]

The use of acoustic waves to control and manipulate suspended particles in the fluid has attracted particular attention in the last two decades. The propagation of acoustic waves in the fluid medium may affect the suspended particles mainly by two factors. The initial effect of wave propagation directly acts on the particles and causes the application of force on them via the fluid medium. In viscous fluid, due to the wave attenuation and the formation of velocity gradients due to viscosity, the secondary fluid streaming forms that can indirectly affect the particles. Due to the wide applications of this technology in medical and biological fields and the complexity of the experimental work in micrometer dimensions, there is a growing demand for analytic studies and theoretical insights on this subject. The subject of the present paper is a review on the analytical studies of the mechanisms affecting the movement of particles under the influence of acoustic waves propagating in the microfluidic systems. This review article presents a historical review of the early theories for the calculations of acoustic radiation forces and follows the progress of these theories up to the now. Also, a review of the existing research results, problems and limitations, and the effect of different parameters on estimating these results are presented.

کلیدواژه‌ها [English]

  • Acoustofluidics: Acoustic radiation force: Acoustic interaction force: Acoustic streaming
[1]  M.Z. Bazant, T.M. Squires, Induced-charge electrokinetic phenomena: theory and microfluidic applications, Physical Review Letters, 92(6) (2004) .101660
[2]  M.Z. Bazant, K. Thornton, A. Ajdari, Diffuse-charge dynamics in electrochemical systems, Physical review E, 70(2) (2004) 021506.
[3]  N. Pamme, Magnetism and microfluidics, Lab on a Chip, 6(1) (2006) 24-38.
[4]  T. Simonova, V. Shilov, O. Shramko, Low-frequency dielectrophoresis and the polarization interaction of uncharged spherical particles with an induced Debye atmosphere of arbitrary thickness, Colloid Journal, 63(1) (2001) 108-115.
[5]  D.N. Ankrett, D. Carugo, J. Lei, P. Glynne-Jones, P.A. Townsend, X. Zhang, M. Hill, The effect of ultrasound-related stimuli on cell viability in microfluidic channels, Journal of nanobiotechnology, 11(1) (2013) 20.
[6]  A. Doinikov, Acoustic radiation pressure on a rigid sphere in a viscous fluid, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 447(1931) (1994) 447-466.
[7]  A.A. Doinikov, Acoustic radiation pressure on a compressible sphere in a viscous fluid, Journal of Fluid Mechanics, 267 (1994) 1-22.
[8]  L.V. King, On the acoustic radiation pressure on spheres, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 147(861) (1934) 212-240.
[9]  S. Danilov, M. Mironov, Mean force on a small sphere in a sound field in a viscous fluid, The Journal of the Acoustical Society of America, 107(1) (2000) 143153.
[10]  R. Barnkob, P. Augustsson, T. Laurell, H. Bruus, Acoustic radiation-and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane, Physical Review E, 86(5) (2012) 056307.
[11]  X. Zheng, R.E. Apfel, Acoustic interaction forces between two fluid spheres in an acoustic field, The Journal of the Acoustical Society of America, 97(4) (1995) 2218-2226.
[12] A.A. Doinikov, Acoustic radiation force on a spherical particle in a viscous heat-conducting fluid. I. General formula, The Journal of the Acoustical Society of America, 101(2) (1997) 713-721.
[13] A.A. Doinikov, Acoustic radiation force on a spherical particle in a viscous heat-conducting fluid. III. Force on a liquid drop, The Journal of the Acoustical Society of America, 101(2) (1997) 731-740.
[14]  A.A. Doinikov, Acoustic radiation force on a spherical particle in a viscous heat-conducting fluid. II. Force on a rigid sphere, The Journal of the Acoustical Society of America, 101(2) (1997) 722-730.
[15]  T. Hasegawa, K. Saka, N. Inoue, K. Matsuzawa, Acoustic radiation force experienced by a solid cylinder in a plane progressive sound field, The Journal of the Acoustical Society of America, 83(5) (1988) 1770-1775.
[16]  T. Hasegawa, K. Yosioka, Acoustic‐radiation force on a solid elastic sphere, The Journal of the Acoustical Society of America, 46(5B) (1969) 1139-1143.
[17]  K. Yosioka, Y. Kawasima, Acoustic radiation pressure on a compressible sphere, Acta Acustica united with Acustica, 5(3) (1955) 167-173.
[18]  H. Bruus, Acoustofluidics 7: The acoustic radiation force on small particles, Lab on a Chip, 12(6) (2012) 1014-1021.
[19]  L. Gor’Kov, On the forces acting on a small particle in an acoustical field in an ideal fluid, in:  Sov. Phys. Dokl., 1962, pp. 773-775.
[20]  J.T. Karlsen, H. Bruus, Forces acting on a small particle in an acoustical field in a thermoviscous fluid, Physical Review E, 92(4) (2015) 043010.
[21]  M. Settnes, H. Bruus, Forces acting on a small particle in an acoustical field in a viscous fluid, Physical Review E, 85(1) (2012) 016327.
[22]  G.T. Silva, H. Bruus, Acoustic interaction forces between small particles in an ideal fluid, Physical Review E, 90(6) (2014) 063007.
[23]  L. Rayleigh, XXXIV. On the pressure of vibrations, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 3(15) (1902) 338-346.
[24]  A.A. Doinikov, Acoustic radiation forces: Classical theory and recent advances, Recent Res Devel Acoustics, 1 (2003) 39-67.
[25]  T. Embleton, Mean force on a sphere in a spherical sound field. II.(Experimental), The Journal of the Acoustical Society of America, 26(1) (1954) 46-50.
[26] T. Embleton, The radiation force on a spherical obstacle in a cylindrical sound field, Canadian Journal of Physics, 34(3) (1956) 276-287.
[27]  W.L. Nyborg, Radiation pressure on a small rigid sphere, The Journal of the Acoustical Society of America, 42(5) (1967) 947-952.
[28 ] T. Embleton, Mean force on a sphere in a spherical sound field. I.(Analytical), The Journal of the Acoustical Society of America, 26(1) (1954) 45-40.
[29]  T. Hasegawa, Comparison of two solutions for acoustic radiation pressure on a sphere, The Journal of the Acoustical Society of America, 61(6) (1977) 1445-1448.
[30]  T. Hasegawa, Acoustic radiation force on a sphere in a quasistationary wave field-experiment, The Journal of the Acoustical Society of America, 65(1) (1979) 41-44.
[31]  W. Wei, D. B. Thiessen, P. L. Marston, Acoustic radiation force on a compressible cylinder in a standing wave, The Journal of the Acoustical Society of America, 116(1) (2004) 201-208.
[32]   J. Wu, G. Du, S. S. Work, D. M. Warshaw, Acoustic radiation pressure on a rigid cylinder: An analytical theory and experiments, The Journal of the Acoustical Society of America, 87(2) (1990) 581-586.
[33]  G. Gaunaurd, M. Werby, Sound scattering by resonantly excited, fluid-loaded, elastic spherical shells, The Journal of the Acoustical Society of America, 90(5) (1991) 2536-2550.
[34] T. Hasegawa, Y. Hino, A. Annou, H. Noda, M. Kato, N. Inoue, Acoustic radiation pressure acting on spherical and cylindrical shells, The Journal of the Acoustical Society of America, 93(1) (1993) 154-161.
[35]  F. Mitri, Acoustic radiation force acting on elastic and viscoelastic spherical shells placed in a plane standing wave field, Ultrasonics, 43(8) (2005) 681-691.
[36]  F. Mitri, Acoustic radiation force acting on absorbing spherical shells, Wave Motion, 43, (1) (2005) 12-19.
[37]  F. Mitri, Calculation of the acoustic radiation force on coated spherical shells in progressive and standing plane waves, Ultrasonics, 44(3) (2006) 244-258.
[38]  P. L. Marston, D. B. Thiessen, Manipulation of fluid objects with acoustic radiation pressure, Annals of the New York Academy of Sciences, 1027(1) (2004) 414434.
[39]  M. J. Marr-Lyon, D. B. Thiessen, P. L. Marston, Passive stabilization of capillary bridges in air with acoustic radiation pressure, Physical review letters, 86(11) (2001) 2293.
[40]  S. M. Hasheminejad, R. Sanaei, Acoustic radiation force and torque on a solid elliptic cylinder, Journal of Computational Acoustics, 15(03) (2007) 377-399.
[41]  K. M. Lim, S. Sepehrirahnama, Multipole expansion method for calculation of acoustic radiation force on non-spherical objects, Acoustofluidics conference, 2013.
[42]  P. L. Marston, W. Wei, D. B. Thiessen, Acoustic radiation force on elliptical cylinders and spheroidal objects in low frequency standing waves, AIP Conference Proceedings, 838(1) (2006) 495-499.
[43]  F. Mitri, Acoustic radiation force on a rigid elliptical cylinder in plane (quasi) standing waves, Journal of Applied Physics, 118(21) (2015) 214903.
[44]  F. B. Wijaya, K. M. Lim, Numerical calculation of acoustic radiation force and torque acting on rigid non-spherical particles, Acta Acustica united with Acustica, 101(3) (2015) 531-542.
[45]  M. Hill, R. J. Townsend, N. R. Harris, Modelling for the robust design of layered resonators for ultrasonic particle manipulation, Ultrasonics, 48(6-7) (2008) .825-125
[46] K. A. Fisher, R. Miles, Modeling the acoustic radiation force in microfluidic chambers, The Journal of the Acoustical Society of America, 123(4) (2008) .5681-2681
[47] D. Haydock, Lattice Boltzmann Simulations of the Time-Averaged Forces on a Cylinder in a Sound Field,  Journal of Physics A: Mathematical and General, 38(15) (2005) 32-65.
[48] F. Cai, L. Meng, C. Jiang, Y. Pan, H. Zheng, Computation of the Acoustic Radiation Force Using the Finite-Difference Time-Domain Method, The Journal of the Acoustical Society of America, 128(4) (2010) 1617-22.
[49] J. Wang, J. Dual, Theoretical and numerical calculation of the acoustic radiation force acting on a circular rigid cylinder near a flat wall in a standing wave excitation in an ideal fluid, Ultrasonics, 52(3) (2012) 325-332.
[50]  P. Glynne-Jones, P. P. Mishra, R. J. Boltryk, M. Hill, Efficient Finite Element Modeling of Radiation Forces on Elastic Particles of Arbitrary Size and Geometry, The Journal of the Acoustical Society of America, 133(4) (2013) 1885-1893.
[51]  A. Garbin, I. Leibacher, P. Hahn, H. Le Ferrand, A. Studart, J. DualJDM, Acoustophoresis of disk-shaped microparticles: A numerical and experimental study of acoustic radiation forces and torques, The Journal of the Acoustical Society of America, 61(3) (1978) 391418.
[52] J. Lighthill, Acoustic streaming, Journal of sound and vibration, 61(3) (1978) 391-418.
[53]  P. J. Westervelt, The theory of steady forces caused by sound waves, Journal of sound and vibration, 61(3) (1978) 391-418.
[54]  D. Haydock, J. M. Yeomans, Lattice Boltzmann simulations of acoustic streaming, Journal of Physics A: Mathematical and General, 34(25) (2001) 52015213.
[55] S. Annamalai, S. Balachandar, M. K. Parmar, Mean force on a finite-sized spherical particle due to an acoustic field in a viscous compressible medium, Physical Review E, 89(5) (2014) 053008.
[56] W. Ran, J. R. Saylor, The directional sensitivity of the acoustic radiation force to particle diameter, The Journal of the Acoustical Society of America, 137(6) (2015) 3288-3298.
[57]  S. Sepehrirahnama, F. S. Chau, K. M. Lim, Numerical calculation of acoustic radiation forces acting on a sphere in a viscous fluid, Physical Review E, 92(6) (2015) 063309.
[58]  J. Lighthill, The Absorption of Sound in Suspensions  and Emulsions. I. Water Fog  in Air, The Journal Of The Acoustical Society Of America, 61(3) (1953) 553565.
[59]  J. R. Allegra, S. A. Hawley, Attenuation of Sound in Suspensions and Emulsions: Theory and Experiments, The Journal Of The Acoustical Society Of America, 51(5) (1971) 1545-1564.
[60] C. P. Lee, T. G. Wang, Acoustic radiation force on a heated sphere including effects of heat  transfer and acoustic streaming, The Journal Of The Acoustical Society Of America, 83(4) (1988) 1324-1331.
[61]  C. P. Lee, T. G. Wang, The  Acoustic Radiation Force on a Heated (or Cooled) Rigid Sphere-Theory, The Journal Of The Acoustical Society Of America, 75(1) (1984) 88-96.
[62]  S. M. Woodside, B. D. Bowen, J. M. Piret, Measurement of ultrasonic forces for particle–liquid separations, AIChE journal, 43(7) (1997) 1727-1736. [63] V. Bjerknes, Fields of force, General Books, 1906.
[64]  L. A. Crume, Bjerknes forces on bubbles in a stationary sound field, The Journal Of The Acoustical Society Of America, 57(6) (1975) 1727-1736.
[65]  T. F. W. Embelton, Mutual Interaction between Two  Acoustical Society of America, 34(11) (1962) 1714-1720.
[66]B. E. Nemtsov, Effects of the radiation interaction of bubbles in a fluid, Pis’ma Zh. Tekh. Fiz., 9 (1983) 858-861.
[67]  A. A. Doinikov, S. T. Zavtrak, Radiation forces between two bubbles in a compressible liquid, The Journal Of The Acoustical Society Of America, 102(3) (1997) 1424-1431.
[68] A. A. Doinikov, S. T. Zavtrak, Bubble and a solid particle in a sound field, Ultrasonics, 34(8) (1996) 807-815.
[69] X. Zheng, R. E. Apfel, Acoustic interaction forces between two fluid spheres in an acoustic field, The Journal Of The Acoustical Society Of America, 97(4) (1995) 2218-2226.
[70]  A. A. Doinikov, Acoustic radiation interparticle forces in a compressible fluid, Journal of Fluid Mechanics, 444 (2001) 1-21.
[71]  S. Sepehrirahnama, K. M. Lim, F. S. Chao, Numerical study of interparticle radiation force acting on rigid spheres in a standing wave, The Journal of the Acoustical Society of America, 137(5), (2015) 2614-2622.
[72] J. H. Lopes, M. Azarpeyvand, G. T. Silva, Acoustic Interaction Forces and Torques Acting on Suspended Spheres in an Ideal Fluid, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 63(1) (2016) 186-197.
[73] S. Sepehrirahnama, F. S. Chau, K. M. Lim, Effects of viscosity and acoustic streaming on the interparticle radiation force between rigid spheres in a standing wave, Physical Review E, 93(2) (2016) 023307.
[74]  F. B. Wijaya, S. Sepehrirahnama, K. M. Lim, Interparticle force and torque on rigid spheroidal particles in acoustophoresis, Wave Motion, 81 (2018) 28-45.
[75] L. Rayleigh, On the Circulation of Air Observed in Kundt’s Tubes, and on some Allied Acoustical Problems, Philosophical Transactions of the Royal Society A, 175(3) (1884) 1-21.
[76]  H. Schlichting, Berechnung ebener periodischer  Grenzschichtströmungen(Calculation of  Plane Periodic Boundary Layer Streaming), Physikalische Zeitschrift, 33(8) (1932) 327-335.
[77]  S. Boluriaan, P. J. Morris, Acoustic streaming: from Rayleigh to today, International Journal of aeroacoustics, 2(3) (2003) 255-292.
[78]  P. J. Westervelt, The Theory of Steady Rotational Flow Generated by a Sound Field, The Journal of Acoustical Society of America, 25(1) (1953) 60-67.
[79]  W. L. M. Nyborg, Acoustic streaming, Physical Acoustics, 2 (1965) 265-331.
[80]  W. L. Nyborg, Acoustic streaming near a boundary, The Journal of Acoustical Society of America, 30(4) (1958) 329-339.
[81]  Q. Qi, The effect of compressibility on acoustic streaming near a rigid boundary for a plane traveling wave, The Journal of Acoustical Society of America, 94 (2) (1993) 1090-1098.
[82]  M. F. Hamilton, Y. A. Ilinskii, E. A. Zabolotskaya, Acoustic streaming generated by standing waves in two-dimensional channels of arbitrary width, The Journal of Acoustical Society of America, 113(1) (2003) 153-160.
[83] M. K. Aktas, B. Farouk, Numerical simulation of acoustic streaming generated by finite-amplitude resonant oscillations in an enclosure, The Journal of Acoustical Society of America, 116(5) (2004) 2822-2831.
[84]  P. B. Muller, R. Barnkob, M. J. H. Jensen, H. Bruus, A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaminginduced drag forces, Lab on a Chip, 12(22) (2012) 4617-4627.
[85] P. B. Muller, M. Rossi, A. G. Marin, R. Barnkob, P. Augustsson, T. Laurell, C. J. K ahler,. Bruus, Ultrasound-induced acoustophoretic motion of microparticles in three dimensions, Physical Review E, 88(2) (2013) 023006.
[86]  P. B. Muller, H. Bruus, Numerical study of thermoviscous effects in ultrasound-induced acoustic streaming in microchannels, Physical Review E, 90(4) (2014) 043016.
[87]  A. A. Doinikov, P. Thibault, P. Marmottant, Acoustic streaming induced by two orthogonal ultrasound standing waves in a microfluidic channel, Ultrasonics, 87 (2018) 7-19.
[88]  W. Qiu, J. T. Karlsen, H. Bruus, P. Augustsson, Characterization of Acoustic Streaming in Gradients of Density and Compressibility, arXiv preprint (2018) 1810.07142.
[89]  J. T. Karlsen, W. Qiu, P. Augustsson, H. Bruus, Acoustic streaming and its suppression in inhomogeneous fluids, Physical review letters, 120(5) (2018) 054501.