مطالعه تجربی و شبیه سازی فاصله آرماتور از سطح بتن با استفاده از جریان گردابی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، مهندسی مکانیک ساخت و تولید، دانشگاه بیرجند، بیرجند، ایران

2 دانشگاه بیرجند*مهندسی مکانیک

3 دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران

چکیده

آزمون غیرمخرب یکی از تکنیک‌هائی است که جهت اطمینان از سلامت ساختمان‌های بتنی مورد استفاده قرار می‌گیرد. جهت مقاوم‌سازی ستون‌های بتنی دانستن تعدادآرماتورهای نهفته دربتن وفواصل آن‌ها نسبتبه سطح بتن ضروری می‌باشد.دراین مقاله جهت بدست آوردن فاصله آرماتور از سطح بتن در ستون‌های بتنی شبیه‌سازیاز روش اجزاءمحدود وبه کمک نرم‌افزارماکسول انجام گردیدو سپس یک نوع پروب اندازه‌گیری طراحی و ساخته شد. زمانی‌که یک رسانامانند آرماتوردرمعرض یک سیم‌پیچ باهسته فریتی قرار می‌گیرد، آرماتور داخل بتن با امواج الکترومغناطیس فرکانس پایین اندرکنش نشان داده و با اندازه‌گیری تاثیرات این امواج در سطح بتن می‌توان محل آرماتور را تخمین زد. پروب طراحی شده در فواصل مختلف آرماتور از سطح بتن،همچنین فرکانس‌های متفاوت مورد آزمون و ارزیابی قرارگرفت. فاصله آرماتور از سطح بتن با استفاده از فرکانس و ولتاژ ثابت و از طریق تغییرات اندوکتانس ومقاومت اهمی سیم‌پیچ قابل پیش‌بینی می‌باشد. به منظور بررسی پارامترهای فاصله آرماتور از سطح بتن وفرکانس برروی مقاومت اهمی و اندوکتانس پروبا ندازه‌گیری از طراحی آزمایش عاملی کامل با سه بار تکرار استفاده شد و یک مدل رگرسیونی ازعوامل تاثیر گذار ارائه گردید. ً نهایتا از شبکه عصبی جهت تخمین فاصله آرماتور از سطح بتن با پارامترهای فرکانس، فاصله آرماتور از سطح بتن و مقاومت اهمی پروب اندازه‌گیری استفاده شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental and Numerical Investigation on the Reinforcement Cover to Concrete Surface Using Eddy Current

نویسندگان [English]

  • hamidreza esrafili 1
  • S.M. Hossein Seyedkashi 2
  • mir saeed safizadeh 3
1 Department of Mechanical Engineering, University of Birjand, Birjand, Iran.
2 Department of Mechanical Engineering, University of Birjand, Birjand, Iran
3 School of Mechanical Engineering, Iran University of Science and Technology
چکیده [English]

Non-destructive testing is one of the techniques which is used to ensure the health in concrete structures. To reinforce a concrete column, it is necessary to know the number of embedded reinforcements in the concrete and the reinforcement cover to the concrete surface. In the present paper, the finite element method was employed to obtain the reinforcement cover to the concrete surface in a concrete column using Maxwell commercial software. Then, a measuring probe was designed and fabricated. In the presence of a coil with a ferrite core, the conductive reinforcement interacts with low[1]frequency electromagnetic waves. The location of the reinforcement could be estimated measuring effects of these waves on the concrete surface. The designed probe was investigated in different distances and frequencies. The reinforcement cover to the concrete surface could be estimated through variations of inductance and ohmic resistance of a coil in a constant frequency and voltage. The full factorial design of experiments method was applied to investigate influences of the reinforcement cover to concrete surface and frequency on ohmic resistance and inductance of the measurement probe and a regression model was proposed for effective parameters. Finally, a neural network was used to estimate the reinforcement cover to concrete surface based on the frequency and ohmic resistance of the measuring probe.

کلیدواژه‌ها [English]

  • Reinforcement cover
  • Concrete surface
  • Measuring Probe
  • Eddy current
  • Ohmic resistance
[1] L. Workman, P. Moore, Nondestructive Testing Handbook: Vol: 10, Overview, ASNT, Columbus, OH, (2012).
[2] R.K. Stanley, P.O. Moore, Nondestructive Testing Handbook V. 9: Special Nondestructive Testing Methods, ASNT, 1995.
[3] D. McCann, M. Forde, Review of NDT methods in the assessment of concrete and masonry structures, Ndt & E International, 34(2) (2001) 71-84.
[4]  B. Szymanik, P. Frankowski, T. Chady, C. John Chelliah, Detection and inspection of steel bars in reinforced concrete structures using active infrared thermography with microwave excitation and eddy current sensors, Sensors, 16(2) (2016) 234.
[5]  ASTM C803, Penetration resistance of hardened concrete, American Society for Testing and Materials,  (1998).
[6] ASTM C900, Standard test method for pullout strenght of hardened concrete, American Society for Testing and Materials,  (1998).
[7] H. Hilsdorf, J. Kropp, Performance criteria for concrete durability, CRC Press, 1995.
[8] ACI 228.2R-98, Non-destructive test methods for evaluation of concrete in structures, American Concrete Institute (1998).
[9] ASTM C597, Standard test method for pulse velocity through concrete, American Society for Testing and Materials,  (1998).
[10]    ASTM C1383, Test Method for Measuring the P-Wave Speed and the Thickness of Concrete Plates using the Impact-Echo Method,, American Society for Testing and Materials, 4 (1998).
[11] P.J.M. Monteiro, C.Y. Pichot, K. Belkebir, Computed tomography of reinforced concrete. In: Materials Science of Concrete, Chapter 12,, American Ceramics Society, (1998).
[12] P.J. Monteiro, F. Morrison, W. Frangos, Non-destructive measurement of corrosion state of reinforcing steel in concrete, Materials Journal, 95(6) (1998) 704-709.
[13] S.K.U. Rehman, Z. Ibrahim, S.A. Memon, M. Jameel, Nondestructive test methods for concrete bridges: A review, Construction and Building Materials, 107 (2016) .68-85
[14] ASTM C876, Standard test method for half cell potentials of uncoated reinforced steel in concrete, American Society for Testing and Materials, 4 (1998).
[15] Z. Sbartaï, S. Laurens, J. Rhazi, J. Balayssac, G.Arliguie, Using radar direct wave for concrete condition assessment: Correlation with electrical resistivity, Journal of applied geophysics, 62(4) (2007) 361-374.
[16] V. Barrile, R. Pucinotti, Application of radar technology to reinforced concrete structures: a case study, NDT & e International, 38(7) (2005) 596-604.
[17]  C. Maierhofer, S. Leipold, Radar investigation of masonry structures, NDT & E International, 34(2) (2001) 139-147.
[18]  M. Shaw, S. Millard, T. Molyneaux, M. Taylor, J. Bungey, Location of steel reinforcement in concrete using ground penetrating radar and neural networks, Ndt & E International, 38(3) (2005) 203-212.
[19]  H. Hamasaki, T. Uomoto, M. Ohtsu, H. Ikenaga, H. Tanano, K. Kishi, A. Yoshimura, Identification of reinforced in concrete by electro-magnetic methods, in: DGZfP Proceedings BB85-CD: International Symposium Non-Destructive Testing in Civil Engeneering, 2003.
[20] P.J. Shull, Nondestructive evaluation: theory, techniques, and applications, CRC press, 2002.
[21]  J. García-Martín, J. Gómez-Gil, E. Vázquez-Sánchez, Non-destructive techniques based on eddy current testing, Sensors, 11(3) (2011) 2525-2565.
[22] G. Rubinacci, A. Tamburrino, S. Ventre, Concrete rebars inspection by eddy current testing, International Journal of Applied Electromagnetics and Mechanics, 25(1-4) (2007) 333-339.
[23]  N. De Alcantara, Identification of steel bars immersed in reinforced concrete based on experimental results of eddy current testing and artificial neural network analysis, Nondestructive Testing and Evaluation, 28(1) (2013) 58-71.
[24] C. Kohl, M. Krause, C. Maierhofer, K. Mayer, J.Wöstmann, H. Wiggenhauser, 3D-visualisation of NDT data using a data fusion technique, Insight-NonDestructive Testing and Condition Monitoring, 45(12) (2003) 800-804.
[25]  P. Gaydecki, I. Silva, B. Fernandes, Z. Yu, A portable inductive scanning system for imaging steel-reinforcing bars embedded within concrete, Sensors and Actuators A: Physical, 84(1-2) (2000) 25-32.
[26] V. Pudov, Electromagnetic devices for assessment of the state of reinforcement elements in reinforced-concrete structures, Russian Journal of Nondestructive Testing, 42(6) (2006) 369-377.
[27] S. Quek, P. Gaydecki, B. Fernandes, G. Miller, Multiple layer separation and visualisation of inductively scanned images of reinforcing bars in concrete using a polynomialbased separation algorithm, NDT & E International, 35(4) (2002) 233-240.
[28] C.J. Lammi, D.A. Lados, Effects of residual stresses on fatigue crack growth behavior of structural materials:Analytical corrections, International Journal of Fatigue, 33(7) (2011) 858-867.
[29]    H. Schoenekess, W. Ricken, J.-G. Liu, W.-J. Becker, Special constructed and optimised eddy-current sensors for measuring force and strain in steel reinforced concrete, Sensors and Actuators A: Physical, 106(1-3) (2003) 159-163.
[30]    M. Zaid, P. Gaydecki, S. Quek, G. Miller, B. Fernandes, Extracting dimensional information from steel reinforcing bars in concrete using neural networks trained on data from an inductive sensor, NDT & E International, 37(7) (2004) 551-558.
[31]    N. de Alcantara, F. da Silva, M. Guimarães, M. Pereira, Corrosion assessment of steel bars used in reinforced concrete structures by means of eddy current testing, Sensors, 16(1) (2016) 15.
[32]    M.N. Sadiku, Numerical techniques in electromagnetics, CRC press, 2000.