حل آنلاین مسئله انتقال حرارت معکوس در یک صفحه یک بعدی با بهره‌گیری از کنترل‌کننده فازی- تناسبی انتگرال‌گیر مشتق‌گیر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مهندسی مکانیک، دانشگاه صنعتی اراک

2 صنعتی اراک-مهندسی مکانیک

چکیده

در این نوشتار به ارائه الگوریتمی جدید بر اساس ویژگی‌های کنترل‌کننده‌های فازی- تناسبی انتگرال‌گیر مشتق‌گیر به منظور برآورد شار حرارتی در مسائل انتقال حرارت معکوس پرداخته شده‌‌است. ساختار اصلی سیستم فازی- تناسبی انتگرال‌گیر مشتق‌گیر، کنترل‌کننده تناسبی انتگرال‌گیر مشتق‌گیر بوده که در آن بهره‌‌های تناسبی، انتگرال‌گیر و مشتق‌گیر توسط سیستم فازی به صورت آنلاین به دست آورده می‌شوند. ورودی الگوریتم دماهای اندازه‌گیری شده است که در هر لحظه کنترل‌کننده هوشمند، شار حرارتی مناسب به منظور تطبیق دمای اندازه‌گیری شده با دمای ورودی مطلوب را محاسبه می‌کند. مزیت الگوریتم پیشنهادی، دنباله‌هایی بودن آن در تخمین شار حرارتی است. مدل مورد مطالعه یک صفحه تخت با یک سطح عایق و سطح فعالی که بر آن شار حرارتی اعمال می‌شود، می‌‌باشد. تغییرات شار حرارتی می‌تواند با زمان به صورت ثابت، پله‌‌ای و مثلثی در نظر گرفته شود. دماهای اندازه‌گیری شده در سطح فعال و غیرفعال با شبیه‌سازی عددی به دست آورده شده است. اثر نویز موجود در دماهای اندازه‌گیری بر دقت روش پیشنهادی بررسی شده است. نتایج حاصله از تخمین‌‌ها و آنالیز خطا نشانگر آن است که این الگوریتم در برآورد شکل‌های مختلف شارحرارتی با مقادیر مختلف نویز موجود دردماهای اندازه‌گیری شده و موقعیت‌‌های مختلف ترموکوپل در دیواره با دقت خیلی خوبی کاملاً موفق بوده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Real Time Solution for Inverse Heat Conduction Problem in One-Dimensional Plate Utilizing Fuzzy- Proportional–Integral–Derivative Controller

نویسندگان [English]

  • Amir Hossein Rabiee 1
  • Somayeh Farahani 2
1 mechanical engineering, arak university of technology
2 صنعتی اراک-مهندسی مکانیک
چکیده [English]

This paper dealing with a novel algorithm based on features of fuzzy- proportional–integral–derivative controllers to estimate heat flux on the inverse heat conduction problems. The main structure of Fuzzy- proportional–integral–derivative is a proportional–integral–derivative controller in which the proportional, integrator and the derivative gains are obtained online by fuzzy system. The input of the algorithm is the measured temperatures within the model. In each time-step, the smart controller calculates the proper heat flux in order to adjust the measured temperature with the desired input temperature. The model studied a flat plate with an insulated surface and an active level that affects the variable heat flux at the time. The variation of heat flux with time can be considered to be constant, step, and triangular. The measured temperatures are obtained at the active and inactive surface with numerical simulation. The effect of noise level at the measurement temperatures on the accuracy of the proposed method is investigated. The estimations and error analysis indicate that this algorithm is very successful in estimating the different forms of heat flux with different amounts of noise and the different thermocouple positions in the wall. The accuracy of the proposed sequence method is higher than that of the Tikhonov method.

کلیدواژه‌ها [English]

  • Heat flux
  • Sequential method
  • Inverse problem
  • Filter
  • Fuzzy- proportional–integral–derivative controller
[1] J.V. Beck, B. Blackwell, C.R.S. Clair Jr, Inverse heat conduction: Ill-posed problems, James Beck, 1985.
[2] A.N. Tikhonov, V.I. Arsenin, Solutions of ill-posed problems, Winston, Washington, DC, 1977.
[3] J.V. Beck, Surface heat flux determination using an integral method, Nuclear Engineering and Design, 7(2) (1968) 170-178.
[4] F. Kowsary, S. Farahani, The smoothing of temperature data using the mollification method in heat flux estimating, Numerical Heat Transfer, Part A: Applications, 58(3) (2010) 246-227.
[5] S. Farahani, M. Sefidgar, F. Kowsary, Estimation of kinetic parameters of composite materials during the cure process by using wavelet transform and mollification method, International Communications in Heat and Mass Transfer, 38(9) (2011) 1305-1311.
[6] K.A. Woodbury, J.V. Beck, Estimation metrics and optimal regularization in a Tikhonov digital filter for the inverse heat conduction problem, International Journal of Heat and Mass Transfer, 62 (2013) 31-39.
[7] K.A. Woodbury, J.V. Beck, H. Najafi, Filter solution of inverse heat conduction problem using measured temperature history as remote boundary condition, International Journal of Heat and Mass Transfer, 72 (2014) 139-147.
[8] H. Najafi, K.A. Woodbury, J.V. Beck, A filter based solution for inverse heat conduction problems in multi-layer mediums, International Journal of Heat and Mass Transfer, 83 (2015) 710-720.
[9] H. Kameli, F. Kowsary, A new inverse method based on Lattice Boltzmann method for 1D heat flux estimation, International Communications in Heat and Mass Transfer, 50 (2014) 1-7.
[10] R. Brittes, F.H. França, A hybrid inverse method for the thermal design of radiative heating systems, International Journal of Heat and Mass Transfer, 57(1) (2013) 48-57.
[11] A.H. Rabiee, Regenerative semi-active vortex-induced vibration control of elastic circular cylinder considering the effects of capacitance value and control parameters, Journal of Mechanical Science and Technology, 32(12) (2018) 5583-5595.
[12] F. Incropera, D. DeWitt, Introduction to heat transfer,  (1985).
[13] G.F. Franklin, J.D. Powell, A. Emami-Naeini, J.D. Powell, Feedback control of dynamic systems, Addison-Wesley Reading, MA, 1994.
[14] C. Killian, Modern Control Technology: Components and Systems, Thompson Delmar, 2005.
[15] K. Zhou, J.C. Doyle, K. Glover, Robust and optimal control, Prentice hall New Jersey, 1996.
[16] M. Krstic, I. Kanellakopoulos, V. Petar, Nonlinear and adaptive control design, Wiley New York, 1995.
[17] H. Gao, W. He, C. Zhou, C. Sun, Neural network control of a two-link flexible robotic manipulator using assumed mode method, IEEE Transactions on Industrial Informatics, 15(2) (2018) 755-765.
[18] Z.-Y. Zhao, M. Tomizuka, S. Isaka, Fuzzy gain scheduling of PID controllers, IEEE transactions on systems, man, and cybernetics, 23(5) (1993) 1392-1398.