[1] M. Halmann and A. Steinfeld, Fuel saving, carbon dioxide emission avoidance, and syngas production by tri-reforming of flue gases from coal- and gas-fired power stations, and by the carbothermic reduction of iron oxide, Energy, 31(15) (2006) 3171–3185.
[2] M. Sadeghi, A. Chitsaz, S. M. S. Mahmoudi, and M. A. Rosen, Thermoeconomic optimization using an evolutionary algorithm of a trigeneration system driven by a solid oxide fuel cell, Energy, 89 (2015) 191–204.
[3] R. Dietrich, J. Oelze, A. Lindermeir, C. Spitta, M. Steffen, T. Küster, S. Chen, C. Schlitzberger, and R. Leithner, Efficiency gain of solid oxide fuel cell systems by using anode offgas recycle - Results for a small scale propane driven unit, Journal of Power Sources, 196 (17) (2011) 7152–7160.
[4] S. Wongchanapai, H. Iwai, M. Saito, and H. Yoshida, Performance evaluation of an integrated small-scale SOFC-biomass gasification power generation system, Journal of Power Sources, 216 (2012) 314–322.
[5] D. Saebea, Y. Patcharavorachot, and A. Arpornwichanop, Analysis of an ethanol-fuelled solid oxide fuel cell system using partial anode exhaust gas recirculation, Journal of Power Sources, 208 (2012) 120–130.
[6] M. Liu, A. Lanzini, W. Halliop, V. R. M. Cobas, A. H. M. Verkooijen, and P. V. Aravind, Anode recirculation behavior of a solid oxide fuel cell system: A safety analysis and a performance optimization, International Journal of Hydrogen Energy, 38 (6) (2013) 2868–2883.
[7] M. Lo Faro, A. Vita, L. Pino, and A. S. Aricò, Performance evaluation of a solid oxide fuel cell coupled to an external biogas tri-reforming process, Fuel Processing Technology, 115 (2013) 238–245.
[8] M. R. Walluk, J. Lin, M. G. Waller, D. F. Smith, and T. A. Trabold, Diesel auto-thermal reforming for solid oxide fuel cell systems: Anode off-gas recycle simulation, Applied Energy, 130 (2014) 94–102.
[9] M. Rokni, Thermodynamic analyses of municipal solid waste gasification plant integrated with solid oxide fuel cell and Stirling hybrid system, International Journal of Hydrogen Energy, 40 (24) (2015) 7855–7869.
[10] S. Wahl et al., Modeling of a thermally integrated 10 kWeplanar solid oxide fuel cell system with anode offgas recycling and internal reforming by discretization in flow direction, Journal of Power Sources, 279 (2015) 656–666.
[11] F. Manenti et al., Biogas-fed solid oxide fuel cell (SOFC) coupled to tri-reforming process: Modelling and simulation, International Journal of Hydrogen Energy, 40 (42) (2015) 14640–14650.
[12] K. Wiranarongkorn and S. Authayanun, ScienceDirect Analysis of thermally coupling steam and tri-reforming processes for the production of hydrogen from bio-oil, International Journal of Hydrogen Energy, 41(41) (2016) 18370–18379.
[13] L. Barelli, G. Bidini, G. Cinti, F. Gallorini, and M. P�niz, SOFC stack coupled with dry reforming, Applied Energy, 192 (2017) 498–507.
[14] A. S. Mehr et al,Solar-assisted integrated biogas solid oxide fuel cell (SOFC) installation in wastewater treatment plant: Energy and economic analysis, Applied Energy, 191 (2017) 620–638.
[15] M. Rokni, Addressing fuel recycling in solid oxide fuel cell systems fed by alternative fuels, Energy, 137 (2017) 1013–1025.
[16] N. Chatrattanawet, D. Saebea, S. Authayanun, A. Arpornwichanop, and Y. Patcharavorachot, Performance and environmental study of a biogas-fuelled solid oxide fuel cell with different reforming approaches, Energy, 146 (2018) 131–140.
[17] A. Chitsaz, M. Sadeghi, M. Sadeghi, and E. Ghanbarloo, Exergoenvironmental comparison of internal reforming against external reforming in a cogeneration system based on solid oxide fuel cell using an evolutionary algorithm, Energy, 144 (2018) 420–431.
[18] M. Sadeghi, M. Jafari, M. Yari, and S. M. S. Mahmoudi, Exergoeconomic assessment and optimization of a syngas production system with a desired H2/CO ratio based on methane tri-reforming process, Journal of CO2 Utilization., 25 (2018) 283–301.
[19] Sanford, Klein, Thermodynamics/S. Klein, G. Nellis." New York: Cambridge, (2012).
[20] F. Ranjbar, A. Chitsaz, S. M. S. Mahmoudi, S. Khalilarya, and M. A. Rosen, Energy and exergy assessments of a novel trigeneration system based on a solid oxide fuel cell, Energy Conversion and Management, 87 (2014) 318–327.
[21] M. Sadeghi, A. S. Mehr, M. Zar, and M. Santarelli, Multi-objective optimization of a novel syngas fed SOFC power plant using a downdraft gasifier, Energy, 148 (2018) 16–31.
[22] J. Hosseinpour, M. Sadeghi, A. Chitsaz, F. Ranjbar, and M. A. Rosen, Exergy assessment and optimization of a cogeneration system based on a solid oxide fuel cell integrated with a Stirling engine, Energy Conversion and Management, 143 (2017) 448–458.
[23] S. M. S. Mahmoudi and L. Khani, Thermodynamic and exergoeconomic assessments of a new solid oxide fuel cell-gas turbine cogeneration system, Energy Conversion and Management, 123 (2016) 324–337.
[24] C. O. Colpan, I. Dincer, and F. Hamdullahpur, Thermodynamic modeling of direct internal reforming solid oxide fuel cells operating with syngas, International Journal of Hydrogen Energy, 32 (7) (2007) 787–795.
[25] S. H. Chan, C. F. Low, and O. L. Ding, Energy and exergy analysis of simple solid-oxide fuel-cell power systems, Journal of Power Sources, 103 (2) (2002) 188-200.
[26] M. Sadeghi, S. M. S. Mahmoudi, and R. Khoshbakhti Saray, Exergoeconomic analysis and multi-objective optimization of an ejector refrigeration cycle powered by an internal combustion (HCCI) engine, Energy Conversion and Management, 96 (2015) 403–417.
[27] M. Sadeghi, M. Yari, S. M. S. Mahmoudi, and M. Jafari, Thermodynamic analysis and optimization of a novel combined power and ejector refrigeration cycle – Desalination system, Applied Energy, 208 (2017) 239–251.
[28] A. Nemati, M. Sadeghi, and M. Yari, Exergoeconomic analysis and multi-objective optimization of a marine engine waste heat driven RO desalination system integrated with an organic Rankine cycle using zeotropic working fluid, Desalination, 422 (2017) 113–123.
[29] M. Sadeghi, A. Nemati, A. ghavimi, and M. Yari, Thermodynamic analysis and multi-objective optimization of various ORC (organic Rankine cycle) configurations using zeotropic mixtures, Energy, 109 (2016) 791–802.
[30] Tao G, Armstrong T, Virkar A , Intermediate temperature solid oxide fuel cell ( IT-SOFC ) research and development activities at MSRI, Ninet. Annu. ACERC&ICES Conf. Utah, (2005).