بهینه سازی چندهدفه پارامترهای فرآیند لیزرکوبی با استفاده از آرایه های متعامد تاگوچی و روش تحلیل رابطه ای خاکستری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مکانیک/دانشگاه صنعتی شریف

2 مدرس، دانشکده مکانیک، دانشگاه ایوانکی، گرمسار، ایران

3 دانشگاه شهید باهنر کرمان

چکیده

لیزرکوبی یکی از فرآیندهای بهبود عمر است که با تابش پالس لیزر با انرژی کافی در زمان بسیار کوتاه بر سطح فلز منجر به نفوذ امواج شوک درون ماده و ایجاد تنش پسماند فشاری درون آن می‌شود. هدف از انجام این پژوهش، بهینه‌سازی چندهدفه پارامترهای موثر در فرآیند لیزرکوبی است. از روش اجزاء محدود جهت مدل‌سازی، آرایه‌های متعامد تاگوچی جهت طراحی آزمایش و تحلیل رابطه‌ای خاکستری جهت بهینه‌سازی چندهدفه استفاده شده است. قطر، فشار، زمان و میزان همپوشانی بین دو پالس مجاور لیزر به عنوان فاکتورهای طراحی که در 4 سطح تغییر می‌کنند در نظر گرفته شده و از آرایه متعامد اِل16 تاگوچی به عنوان چیدمان آزمایش‌ها استفاده شده است. میانگین تنش پسماند در سطح پالس اول، کمترین و بیشترین تنش پسماند و میانگین عمق تنش پسماند در مراکز دو پالس لیزر به عنوان توابع هدف بهینه‌سازی در نظر گرفته شده‌اند. با انجام تحلیل رابطه‌ای خاکستری، امتیاز رابطه‌ای خاکستری برای هر آزمایش محاسبه شده و حالت بهینه هریک از پارامترها به‌دست آمده است. نتایج نشان‌دهنده این است که حالت بهینه هر یک از پارامترهای قطر، فشار، زمان و میزان همپوشانی بین دو پالس به ترتیب در سطوح چهارم، چهارم، اول و چهارم می‌باشد که به ترتیب برابر 8 میلیمتر، 4 گیگاپاسکال، 30 نانوثانیه و 75 درصد می‌باشند .همچنین تحلیل واریانس بر روی نتایج صورت گرفت تا تاثیر هر یک از پارامترها بر روی خروجی مشخص شود که زمان لیزر با 87/58 درصد، تاثیرگذارترین پارامتر بر روی نتایج است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Multi-Objective Optimization of Laser Peening Process Parameters Using Taguchi Orthogonal Array and Gray Relational Analysis

نویسندگان [English]

  • rasool bikdeloo 1
  • ali kiani 2
  • Hadi Salavati 3
1 Mechanical engineering/sharif university
2 Department of Mechanical Engineering, University of Eyvanekey, Garmsar, Iran
3 Department of Mechanical Engineering Shahid Bahonar University of Kerman http://academicstaff.uk.ac.ir/hsalavati
چکیده [English]

Laser peening is one of the life-enhancing process that by radiation of laser pulse with sufficient energy at very short time on the surface of the metal results in the penetration of shock waves inside the material and the formation of compressive residual stresses inside it. The purpose of this research is the multi-objective optimization of the laser peening process parameters. Finite element method is used for modeling, Taguchi orthogonal array for design of experiment and the gray relational analysis for multi-objective optimization. The diameter, pressure, time, and overlap rate between two adjacent laser pulses are considered as design factors that change in 4 levels and the Taguchi L16 orthogonal array is used for experiments layout. The average residual stress at the surface of first pulse, minimum and maximum residual stress and the mean of the residual stress depth in the center of two laser pulses were considered as optimization target functions. By performing a gray-relational analysis, the Gray relational grade for each experiment was calculated and the optimal level of each parameter was obtained. The results indicate that the optimal state of each parameters of diameter, pressure, time and the overlap rate between the two laser pulses are at the fourth, fourth, first and fourth levels, respectively are 8 mm, 4 GPa, 30 ns and 75%. Also, analysis of variance was performed on the results to determine the effect of each parameters on the output that the laser time with 58.87% is the most effective parameter on the results.

کلیدواژه‌ها [English]

  • Laser peening
  • finite element method
  • Multi-objective optimization
  • Grey relational analysis
[1]    Y. Al-Obaid, Shot peening mechanics: experimental and theoretical analysis, Mechanics of Materials, 19(2-3)(1995)251-260.
[2]    Y. Kudryavtsev, J. Kleiman, G. Prokopenko, V. Knysh, L. Gimbrede, Effect of Ultrasonic Peening on microhardness and residual stress in materials and welded elements, in:  SEM International Congress and Exposition on Experimental and Applied Mechanics. Costa Mesa, California, USA, June 7-10, 2004.(on CD), 2004.
[3]    M. Srivastava, R. Tripathi, S. Hloch, S. Chattopadhyaya, A.R. Dixit, Potential of using water jet peening as a surface treatment process for welded joints, Procedia Engineering, 149 (2016) 472-480.
[4]    J.-E. Masse, G. Barreau, Laser generation of stress waves in metal, Surface and Coatings Technology, 70(2-3 (1995) 231-234.
[5]    P. Peyre, R. Fabbro, P. Merrien, H. Lieurade, Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour, Materials Science and Engineering: A, 210(1-2) (1996) 102-113.
[6]    J.-M. Yang, Y. Her, N. Han, A. Clauer, Laser shock peening on fatigue behavior of 2024-T3 Al alloy with fastener holes and stopholes, Materials Science and Engineering: A, 298(1) (2001) 296-299.
[7]    W. Braisted, R. Brockman, Finite element simulation of laser shock peening, International Journal of Fatigue, 21(7) (1999) 719-724.
[8]    K. Ding, L. Ye, Simulation of multiple laser shock peening of a 35CD4 steel alloy, Journal of Materials Processing Technology, 178(1-3) (2006) 162-169.
[9]    Y. Cao, Y.C. Shin, B. Wu, Parametric study on single shot and overlapping laser shock peening on various metals via modeling and experiments, Journal of Manufacturing Science and Engineering, 132(6) (2010) 061010.
[10]F. Dai, J. Lu, Y. Zhang, D. Wen, X. Ren, J. Zhou, Effect of laser spot size on the residual stress field of pure Al treated by laser shock processing: Simulations, Applied Surface Science, 316 (2014) 477-483.
[11]H.K. Amarchinta, R.V. Grandhi, A.H. Clauer, K. Langer, D.S. Stargel, Simulation of residual stress induced by a laser peening process through inverse optimization of material models, Journal of Materials Processing Technology, 210(14) (2010) .6002-7991
[12]W. Wang, J.Z. Zhou, S. Huang, Y.J. Fan, C. Wang, J. Fan, Parameters Optimization of Laser Shot Peening Based on Multi-Island Genetic Algorithm, in:  Applied Mechanics and Materials, Trans Tech Publ, 2011, pp. 387-390.
[13]S. Bhamare, G. Ramakrishnan, S.R. Mannava, K. Langer, V.K. Vasudevan, D. Qian, Simulationbased optimization of laser shock peening process for improved bending fatigue life of Ti–6Al–2Sn– 4Zr–2Mo alloy, Surface and Coatings Technology, 232 (2013) 464-474.
[14]C. Fu, J. Zheng, J. Zhao, W. Xu, Application of grey relational analysis for corrosion failure of oil tubes, Corrosion Science, 43(5) (2001) 881-889.
[15]J. Lin, C. Lin, The use of the orthogonal array with grey relational analysis to optimize the electrical discharge machining process with multiple performance characteristics, International Journal of Machine Tools and Manufacture, 42(2) (2002) 237-244.
[16]L.K. Pan, C.C. Wang, S.L. Wei, H.F. Sher, Optimizing multiple quality characteristics via Taguchi method-based Grey analysis, Journal of Materials Processing Technology, 182(1-3) (2007) .611-701
[17]R. Sreenivasulu, C. Rao, Application of gray relational analysis for surface roughness and roundness error in drilling of Al 6061 alloy, International journal of lean thinking, 3(2) (2012) 67-78.
[18]M. Kowalczyk, Application of Taguchi and Anova methods in selection of process parameters for surface roughness in precision turning of titanium, Advances in Manufacturing Science and Technology, 38(2 (2014).
[19]G. Taguchi, A.P. Organization, Introduction to quality engineering: designing quality into products and processes, The Organization, 1986.
[20]D. Julong, Introduction to grey system theory, The Journal of grey system, 1(1) (1989) 1-24.
[21]A. Mohammmadi, N. Molaei, Applying a Multi Criteria Decision Making Model Based On Grey Theory In Performance Evaluation Of Firms, journal of Industrial management 2(4) (2010).In Persian)
[22]B.C. Jiang, S.-L. Tasi, C.-C. Wang, Machine visionbased gray relational theory applied to IC marking inspection, IEEE Transactions on Semiconductor Manufacturing, 15(4) (2002) 531-539.