بررسی اثر جهت قرار گیری هیتر و کولر بر عملکرد یک مدار جابهجایی طبیعی مینیاتوری با نانو سیال آب-مس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک، واحد علی آباد کتول، دانشگاه آزاد اسلامی، علی آباد کتول، ایران

2 باشگاه پژوهشگران جوان و نخبگان، واحد علی آباد کتول ، دانشگاه آزاد اسلامی، علی آباد کتول، ایران

چکیده

هدف اصلی این مقاله، بررسی اثرات جهت قرارگیری هیتر و کولر بر دبی جرمی مدار و توزیع دما در مدار جابه‌جایی طبیعی می‌باشد. برای رسیدن به این هدف، معادلات حاکم بر مدار جابه‌جایی طبیعی- بقاء جرم، مومنتم و انرژی- به صورت بدون بعد نوشته می‌شوند. نانو سیال آب - مس به عنوان سیال عامل در نظر گرفته شده و تأثیر درصد نانو ذرات بر دبی جرمی بررسی می‌گردد. همچنین، اثرات دیگر پارامترها مانند قطر لول ه، ارتفاع مدار، زاویه شیب مدار نسبت به قائم، و توان هیتر بر روی نرخ دبی جرمی مدار و توزیع دما بررسی می‌گردند. نتایج نشان می‌دهد که افزایش 20 درصدی قطر لوله‌های مدار برای تمام جهت‌های قرارگیری هیتر و کولر، به طور متوسط باعث افزایش 43 درصدی دبی جرمی مدار می‌گردد. در توان هیتر 50W ، هنگامی که درصد نانو ذره از مقدار صفر به 2% افزایش می‌یابد، دبی جرمی تقریباً 8/ 12 % افزایش می‌یابد. هنگامی که توان هیتر از 20W به 30W افزایش می‌یابد ) 50 % افزایش( در همه حالت‌ها، دبی جرمی حالت پایا تقریباً 4/ 22 % افزایش می‌یابد. در توان هیتر 20W و با 2% نانو ذره، دما در انتهای هیتر برای حالت هیتر افقی-کولر افقی و برای حالت هیتر عمودی-کولر عمودی به ترتیب 34 oc و 97 oc است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Orientation of the Heater and Cooler on the Performance of a Mini Natural Circulation Loop with Cu-Water Nanofluid

نویسندگان [English]

  • Seyyed Masoud Seyyedi 1
  • A.S. Dogonchi 2
  • Mehdi Hashemi-Tilehnoee 1
1 Department of Mechanical Engineering, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran
2 Young Researchers and Elite Club, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran
چکیده [English]

The main objective of this paper is to investigate the effects of the orientation of    heater and cooler on the mass flow rate and temperature distribution in a natural circulation loop. The governing equations of the natural circulation loop – mass conservation, momentum, and energy- are written in the non-dimensional form. Cu-Water nanofluids considered as the working fluid and the effect of nanoparticles percentage on mass flow rate is investigated. Also, the effects of other parameters such as pipe diameter, height of the loop, loop inclination angle and the heater power on the mass flow rate of the loop and temperature distribution are investigated. The results show the mass flow rate increases 43% when the diameter of pipes increases 20% for all orientations of the heater and cooler. For heater power 50 W, the mass flow rate increases 12.8% almost, when the percentage of nanoparticles increases 2%. The mass flow rate increases 22.4% almost as the power heater increases from 20 W to 30 W (50 % increasing) for all orientations. For heater power 20 W and 2% nanoparticles, the temperature at the end of heater (hot leg) for horizontal heater and horizontal cooler and vertical heater and vertical cooler is 34 ºC, and 97 ºC, respectively.

کلیدواژه‌ها [English]

  • Mini natural circulation loop
  • Mass flow rate
  • Heater and cooler
  • Nanofluid
[1] Q. Zhou, Y. Xia, G. Liu, X. Ouyang, A miniature integrated nuclear reactor design with gravity independent autonomous circulation, Nuclear Engineering and Design, 340 (2018) 9-16.
[2] D. Japikse, Advances in thermosyphon technology, in: Advances in heat transfer, Elsevier, 1973, pp. 1-111.
[3] Y. Zvirin, A review of natural circulation loops in pressurized water reactors and other systems, Nuclear Engineering and Design, 67(2) (1982) 203-225.
[4] R. Greif, Natural circulation loops, Journal of Heat Transfer, 110(4b) (1988) 1243-1258.
[5] P. Vijayan, A. Nayak, D. Saha, M. Gartia, Effect of loop diameter on the steady state and stability behaviour of single-phase and two-phase natural circulation loops, Science and technology of nuclear installations, 2008 (2008).
[6] P. Vijayan, Experimental observations on the general trends of the steady  state  and  stability  behaviour  of single-phase natural circulation loops, Nuclear Engineering and Design, 215(1-2) (2002) 139-152.
[7] A. Nayak, M. Gartia, P. Vijayan, An experimental investigation    of    single-phase    natural circulation behavior in a rectangular loop with Al2O3 nanofluids, Experimental thermal and fluid science, 33(1) (2008) 184-189.
[8] M. Misale, F. Devia, P. Garibaldi, Experiments with Al2O3 nanofluid in a single-phase natural circulation mini-loop: Preliminary results, Applied Thermal Engineering, 40 (2012) 64-70.
[9] B. Swapnalee, P. Vijayan, A generalized flow equation for single phase natural circulation loops obeying multiple friction laws, International Journal of Heat and Mass Transfer, 54(11-12) (2011) 2618-2629.
[10] C.-J. Ho, Y. Chung, C.-M. Lai, Thermal performance of Al2O3/water nanofluid in a natural circulation loop with a mini-channel heat sink and heat source, Energy conversion and management, 87 (2014) 848-858.
[11] S. Doganay, A. Turgut, Enhanced effectiveness of nanofluid based natural circulation mini loop, Applied Thermal Engineering, 75 (2015) 669-676.
[12] L. Lima, N. Mangiavacchi, L. Ferrari, Stability analysis of passive cooling systems for  nuclear  spent fuel pool, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(3) (2017)1019-1031.
[13] A. Srivastava, J.Y. Kudariyawar, A. Borgohain, S. Jana, N. Maheshwari, P. Vijayan, Experimental and theoretical studies on the natural circulation behavior of molten salt loop, Applied Thermal Engineering, 98 (2016) 513-521.
[14] m. moradzadeh, b. ghasemi, A. Raisi, Nanofluid mixed-convection heat transfer in a ventilated cavity with a baffle, Amirkabir Journal of Mechanical Engineering, 48(3) (2016) 257-266.
[15] M. Hosseini Abadshapoori, M.H. Saidi, Al2O3-water Nanofluid in a Square Cavity with Curved Boundaries, Amirkabir Journal of Mechanical Engineering, 49(3) (2017) 567-580.
[16] H. Cheng, H. Lei, C. Dai, Thermo-hydraulic characteristics and second-law analysis of a single- phase natural circulation loop with end heat exchangers, International Journal of Thermal Sciences, 129 (2018) 375-384.
[17] H. Cheng, H. Lei, L. Zeng, C. Dai, Theoretical and experimental studies of heat transfer characteristics of a single-phase natural circulation mini-loop with end heat exchangers, International Journal of Heat and Mass Transfer, 128 (2019) 208-216.
[18] G.A. Sheikhzadeh, M. Sepehrnia, M. Rezaie, M. Mollamahdi, Natural Convection of Turbulent Al2O3- Water Nanofluid with Variable Properties in a Cavity with a Heat Source and Heat Sink on Vertical Walls, Amirkabir Journal of Mechanical Engineering, 50(6) (2019) 1237-1250.
[19] S.M. Seyyedi, M. Hashemi-Tilehnoee, Parametric study of a rectangular single phase natural circulation loop at steady state, Modares Mechanical Engineering, 18(2) (2018) 413-422.
[20] H. Cheng, H. Lei, L. Zeng, C. Dai, Experimental investigation of  single-phase  natural  circulation  in a mini-loop driven by heating and cooling fluids, Experimental Thermal and Fluid Science, 103 (2019) 182-190.
[21] S. Seyyedi, N. Sahebi, A. Dogonchi, M. Hashemi- Tilehnoee, Numerical and experimental analysis of a rectangular single-phase natural circulation loop with asymmetric heater position, International Journal of Heat and Mass Transfer, 130 (2019) 1343-1357.
[22] M. Hashemi-Tilehnoee, N. Sahebi, A. Dogonchi, S.M. Seyyedi, S. Tashakor, Simulation of the dynamic behavior of a rectangular single-phase natural circulation vertical loop with asymmetric heater, International Journal of Heat and Mass Transfer, 139 (2019) 974-981.
[23] X.-Q. Wang, A.S. Mujumdar, Heat transfer characteristics of nanofluids: a review, International journal of thermal sciences, 46(1) (2007) 1-19.
[24] A. Dogonchi, M.A. Ismael, A.J. Chamkha, D. Ganji, Numerical analysis of natural convection of Cu–water nanofluid filling triangular cavity with semicircular bottom wall, Journal of Thermal Analysis and Calorimetry, 135(6) (2019) 3485-3497.
[25] J. Reyes, Natural Circulation in Water Cooled Nuclear Power Plants Phenomena, models, and methodology for system reliability assessments, Dr. Jose Reyes (US), 2005.