ارائه رویکرد تقسیم دامنه صریح- ضمنی جهت‌متغیر برای حل معادله انتقال حرارت روی پردازنده گرافیکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک، دانشگاه بیرجند

2 دانشگاه بیرجند، عضو هیات علمی گروه مهندسی مکانیک

3 دانشکده علوم مهندسی دانشگاه تهران

چکیده

در تحقیق حاضر، رویکرد جدید تقسیم دامنه صریح- ضمنی جهت‌متغیر با ترکیب روش ضمنی جهت‌متغیر و روش تقسیم دامنه صریح- ضمنی برای حل معادله انتقال حرارت هدایت دو بعدی روی پردازنده گرافیکی ارائه شده است. در این روش تخمین مقادیر مرزی با یک طرح عددی صریح صورت گرفته و برای حل درون زیردامنه‌ها از روش ضمنی جهت‌متغیر استفاده می‌شود. سپس از یک طرح ضمنی برای تصحیح مقادیر روی مرز استفاده می‌شود. همچنین، آزمایش عددی برای تحلیل دقت و سرعت روش به انجام رسیده است. نتایج تحقیق نشان می‌دهد که در روش ارائه‌شده با افزایش مشغولیت پردازنده گرافیکی سرعت حل بین 3/1 تا 6/2 برابر نسبت به روش ضمنی جهت‌متغیر افزایش می‌یابد. در روش ارائه‌شده با افزایش تعداد تقسیمات، سرعت محاسبات افزایش و دقت پاسخ کاهش می‌یابد. خطای روش ارائه‌شده از روش ضمنی جهت‌متغیر بیشتر است با این حال نتایج نشان‌دهنده پایداری بالای روش ارائه‌شده است. همچنین نتایج نشان می‌دهد که مزیت روش ارائه‌شده در شبکه‌های ریز بیشتر از شبکه‌های درشت است بگونه‌ای که با افزایش اندازه شبکه از 256×256 به 512×512 مقدار پارامتر افزایش سرعت از 4/2 به 7/1 کاهش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Developing an alternating direction explicit-implicit domain-decomposition approach to solve heat transfer equation on graphics processing unit

نویسندگان [English]

  • Ali Foadaddini 1
  • Alireza Zolfaghari 2
  • Hossein Mahmoodi Darian 3
1 Department of Mechanical Engineering, University of Birjand
2 University of Birjand
3 University of Tehran
چکیده [English]

In the present study, a new alternating direction explicit-implicit domain decomposition approach is proposed by combining the alternating direction implicit method with the explicit-implicit domain decomposition method. The method is used for solving the two-dimensional conduction heat transfer equation on a graphics processing unit. In this method, an explicit numerical scheme is used to predict values at the inner boundaries, and an implicit scheme based on the alternating direction implicit method is used to solve the sub-domains. Then, an implicit scheme is used to correct the values on the inner boundaries. Numerical experiments are done to investigate the accuracy and speed of the method. The results show that the present method can achieve a speedup of 1.3 to 2.6 times compared to the alternating direction implicit method. Increasing the number of subdomains increases the speed and decreases the accuracy of the method. Although numerical experiments show high stability of the present method, its error is higher than the alternating direction implicit method. Furthermore, the results show that the present method is more advantageous to problems with coarse grids, such that by increasing the grid size from 256 × 256 to 512 × 512, the speedup decreases from 2.4 to 1.7.

کلیدواژه‌ها [English]

  • Computational fluid dynamics
  • Parallel processing
  • Graphics processing unit
  • Alternating direction implicit method
  • Corrected explicit-implicit domain decomposition algorithm
[1] K.E. Niemeyer, C.-J. Sung, Recent progress and challenges in exploiting graphics processors in computational fluid dynamics, The Journal of Supercomputing, 67(2) (2013) 528-564.
[2] G. Alfonsi, S.A. Ciliberti, M. Mancini, L. Primavera, GPGPU implementation of mixed spectral-finite difference computational code for the numerical integration of the three-dimensional time-dependent incompressible Navier–Stokes equations, Computers & Fluids, 102 (2014) 237-249.
[3] F. Salvadore, M. Bernardini, M. Botti, GPU accelerated flow solver for direct numerical simulation of turbulent flows, Journal of Computational Physics, 235 (2013) 129-142.
[4] S. Vanka, A.F. Shinn, K.C. Sahu, Computational Fluid Dynamics Using Graphics Processing Units: Challenges and Opportunities, Fluids and Thermal Systems; Advances for Process Industries,  (2011) 429-437.
[5] L. Deng, H. Bai, F. Wang, Q. Xu, Cpu/Gpu Computing for an Implicit Multi-Block Compressible Navier-Stokes Solver on Heterogeneous Platform, International Journal of Modern Physics: Conference Series, 42 (2016) 1660163.
[6] G. Borrell, J.A. Sillero, J. Jiménez, A code for direct numerical simulation of turbulent boundary layers at high Reynolds numbers in BG/P supercomputers, Computers & Fluids, 80 (2013) 37-43.
[7] N. Sakharnykh, Tridiagonal solvers on the GPU and applications to fluid simulation, in:  NVIDIA GPU Technology Conference, San Jose, California, USA, 2009, pp. 17-19.
[8] S. Ha, J. Park, D. You, A GPU-accelerated semi-implicit fractional-step method for numerical solutions of incompressible Navier–Stokes equations, Journal of Computational Physics, 352 (2018) 246-264.
[9] C.N. Dawson, Q. Du, T. F. Dupont, A finite difference domain decomposition algorithm for numerical solution of the heat equation, mathematics of computation, 57 (1991) 63-71.
[10] Q. Du, Mu, M, Wu, Z N, Efficient parallel algorithms for parabolic problems, SIAM Journal on Numerical Analysis, 39(5) (2002 ) 1469-1487.
[11] X.-h. Sun, Y. Zhuang, stablized explici-implicit domain decomposition method for the numerical solution of finit difference equation, SIAM Journal on Numerical Analysis, 24(1) (2002) 335-358.
[12] H.S. Shi, H.-L. Liao, Unconditional Stability of Corrected Explicit‐Implicit Domain Decomposition Algorithms for Parallel Approximation of Heat Equations, SIAM Journal on Numerical Analysis, 44(4) (2006) 1584-1611.
[13] L. Zhu, An Explicit-Implicit Predictor-Corrector Domain Decomposition Method for Time Dependent Multi-Dimensional Convection Diffusion Equations, Numerical Mathematics: Theory, Methods and Applications, 2(3) (2009) 301-325.
[14] H. Liao, H. Shi, Z. Sun, Corrected explicit-implicit domain decomposition algorithms for two-dimensional semilinear parabolic equations, Science in China Series A: Mathematics, 52(11) (2009) 2362-2388.
[15] C. Du, D. Liang, An efficient S-DDM iterative approach for compressible contamination fluid flows in porous media, Journal of Computational Physics, 229(12) (2010) 4501-4521.
[16] D. Liang, C. Du, The efficient S-DDM scheme and its analysis for solving parabolic equations, Journal of Computational Physics, 272 (2014) 46-69.
[17] Z. Zhou, D. Liang, Y. Wong, The new mass-conserving S-DDM scheme for two-dimensional parabolic equations with variable coefficients, Applied Mathematics and Computation, 338 (2018) 882-902.