[1] K.E. Niemeyer, C.-J. Sung, Recent progress and challenges in exploiting graphics processors in computational fluid dynamics, The Journal of Supercomputing, 67(2) (2013) 528-564.
[2] G. Alfonsi, S.A. Ciliberti, M. Mancini, L. Primavera, GPGPU implementation of mixed spectral-finite difference computational code for the numerical integration of the three-dimensional time-dependent incompressible Navier–Stokes equations, Computers & Fluids, 102 (2014) 237-249.
[3] F. Salvadore, M. Bernardini, M. Botti, GPU accelerated flow solver for direct numerical simulation of turbulent flows, Journal of Computational Physics, 235 (2013) 129-142.
[4] S. Vanka, A.F. Shinn, K.C. Sahu, Computational Fluid Dynamics Using Graphics Processing Units: Challenges and Opportunities, Fluids and Thermal Systems; Advances for Process Industries, (2011) 429-437.
[5] L. Deng, H. Bai, F. Wang, Q. Xu, Cpu/Gpu Computing for an Implicit Multi-Block Compressible Navier-Stokes Solver on Heterogeneous Platform, International Journal of Modern Physics: Conference Series, 42 (2016) 1660163.
[6] G. Borrell, J.A. Sillero, J. Jiménez, A code for direct numerical simulation of turbulent boundary layers at high Reynolds numbers in BG/P supercomputers, Computers & Fluids, 80 (2013) 37-43.
[7] N. Sakharnykh, Tridiagonal solvers on the GPU and applications to fluid simulation, in: NVIDIA GPU Technology Conference, San Jose, California, USA, 2009, pp. 17-19.
[8] S. Ha, J. Park, D. You, A GPU-accelerated semi-implicit fractional-step method for numerical solutions of incompressible Navier–Stokes equations, Journal of Computational Physics, 352 (2018) 246-264.
[9] C.N. Dawson, Q. Du, T. F. Dupont, A finite difference domain decomposition algorithm for numerical solution of the heat equation, mathematics of computation, 57 (1991) 63-71.
[10] Q. Du, Mu, M, Wu, Z N, Efficient parallel algorithms for parabolic problems, SIAM Journal on Numerical Analysis, 39(5) (2002 ) 1469-1487.
[11] X.-h. Sun, Y. Zhuang, stablized explici-implicit domain decomposition method for the numerical solution of finit difference equation, SIAM Journal on Numerical Analysis, 24(1) (2002) 335-358.
[12] H.S. Shi, H.-L. Liao, Unconditional Stability of Corrected Explicit‐Implicit Domain Decomposition Algorithms for Parallel Approximation of Heat Equations, SIAM Journal on Numerical Analysis, 44(4) (2006) 1584-1611.
[13] L. Zhu, An Explicit-Implicit Predictor-Corrector Domain Decomposition Method for Time Dependent Multi-Dimensional Convection Diffusion Equations, Numerical Mathematics: Theory, Methods and Applications, 2(3) (2009) 301-325.
[14] H. Liao, H. Shi, Z. Sun, Corrected explicit-implicit domain decomposition algorithms for two-dimensional semilinear parabolic equations, Science in China Series A: Mathematics, 52(11) (2009) 2362-2388.
[15] C. Du, D. Liang, An efficient S-DDM iterative approach for compressible contamination fluid flows in porous media, Journal of Computational Physics, 229(12) (2010) 4501-4521.
[16] D. Liang, C. Du, The efficient S-DDM scheme and its analysis for solving parabolic equations, Journal of Computational Physics, 272 (2014) 46-69.
[17] Z. Zhou, D. Liang, Y. Wong, The new mass-conserving S-DDM scheme for two-dimensional parabolic equations with variable coefficients, Applied Mathematics and Computation, 338 (2018) 882-902.