طراحی قانون هدایت مقاوم سه‌بعدی با رویکرد برنامه‌ریزی پویای تطبیقی و درنظرگرفتن اشباع ورودی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی برق و کامپیوتر دانشگاه صنعتی اصفهان

2 دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی اصفهان

3 صنعتی اصفهان

چکیده

در این مقاله، قانون هدایت مقاوم در فضاى سه بعدى براى هدایت رهگیر زمین به هوا با درنظرگرفتن محدودیت اشباع در ورودى هاى سیستم به همراه دینامیک مرتبۀ اول براى سیستم خودخلبان به منظور ارتقاء عملکرد سیستم هاى تدافعى ارائه مى شود. براى دست یابى به این هدف، ابتدا مسئلۀ موردمطالعه در دستگاه مختصات سه بعدى کروى مدل سازى شده و پساز آن با استفاده از اصول هندسۀ درگیرى براى دست یابى به برخورد رهگیر و هدف، تابع هزینۀ مناسب با درنظرگرفتن محدودیت ورودى و عدم اطلاع از شتاب هدف، فرمول بندى مى شود. پس از آن نشان داده مى شود که حل مسئلۀ موردنظر با استفاده از ادبیات طراحى کنترل مقاوم، نیازمند حل نامساوى معادلۀ دیفرانسیلى همیلتون ـ ژاکوبى ـ ایزاک است که براى مسئلۀ موردمطالعه جواب بسته ندارد. ازاین رو براى غلبه بر این مشکل، با استفاده از نظریۀ برنامه ریزى پویاى تطبیقى، یک الگوریتم حل مسئله براى طراحى قانون هدایت مقاوم پیشنهاد مى شود که از ویژگى هاى آن، ساده شدن حل نامساوى دیفرانسیلى به همراه تضمین عملکرد مقاوم کنترل کننده در مقابل شتاب هدف است. شبیه سازى هاى انجام شده براى اهداف با قدرت مانورهاى مختلف و مقایسۀ عملکرد قانون پیشنهادى با روش مرسوم هدایت تناسبى افزوده شده، نشان دهندة کارایى مناسب قانون هدایت مقاوم سه بعدى طراحى شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Design of Three-dimensional Robust Guidance Law Using Adaptive Dynamic Programming with Input Saturation Constraint

نویسندگان [English]

  • saeid Khan Kalantari 1
  • Iman Izadi 2
  • Farid Sheikholeslam 3
1 Isfahan university of technology
2 Department of Electrical and Computer Engineering, Isfahan University of Technology
3 Department of Electrical and Computer Engineering, Isfahan University of Technology
چکیده [English]

In this paper, a three-dimensional robust guidance law for an interceptor considering input saturation and first-order dynamic for the autopilot system is designed. To attain this goal, first, modeling of the system in three-dimensional spherical coordination using engagement basics has been derived and after that, the appropriate cost function for a collision of interceptor and target considering actuator constraints and in absence of target movement information has been formulated. According to robust control literature for achieving this type of guidance laws, Hamilton-Jacobi-Isaacs differential equation inequality should be solved which unfortunately does not have a closed-form solution in our problem. Therefore, to overcome this challenge, using adaptive dynamic programming theory for solving acquired Hamilton-Jacobi-Isaacs, an algorithm for designing robust guidance law has been presented. Simplification of the differential inequality and also satisfying the robustness of the controller to different unknown target movemnts, are the most important features of the proposed algorithm. Various simulations for targets with different movements and comparison of the proposed method with conventional augmented proportional navigation, show the effectiveness of the designed three-dimensional robust guidance law.

کلیدواژه‌ها [English]

  • Guidance law
  • Interception
  • Robust control
  • Adaptive dynamic programming
[1] A.E. Bryson, Applied optimal control: optimization, estimation and control, Routledge, 2018.
[2] R. Yanushevsky, W. Boord, New approach to guidance law design, Journal of Guidance, Control, and Dynamics, 28(1) (2005) 162-166.
[3] Y. Shtessel, C. Edwards, L. Fridman, A. Levant, Sliding mode control and observation, Springer, 2014.
[4] Y.B. Shtessel, I.A. Shkolnikov, A. Levant, Guidance and control of missile interceptor using second-order sliding modes, IEEE Transactions on Aerospace and Electronic Systems, 45(1) (2009) 110-124.
[5] S. Phadke, S.E. Talole, Sliding mode and inertial delay control based missile guidance, IEEE Transactions on Aerospace and Electronic Systems, 48(4) (2012) 33313346.
[6] G.L. Li, H. Yan, H.-B. Ji, A guidance law with finite time convergence considering autopilot dynamics and uncertainties, International Journal of Control, Automation and Systems, 12(5) (2014) 1011-1017.
[7] Z. Zhang, S. Li, S. Luo, Terminal guidance laws of missile based on ISMC and NDOB with impact angle constraint, Aerospace Science and Technology, 31(1) (2013) 30-41.
[8] J. Song, S. Song, Three-dimensional guidance law based on adaptive integral sliding mode control, Chinese Journal of Aeronautics, 29(1) (2016) 202-214.
[9] V. Rajasekhar, A. Sreenatha, Fuzzy logic implementation of proportional navigation guidance, Acta Astronautica, 46(1) (2000) 17-24.
[10] B.S. Chen, Y.Y. Chen, C.-L. Lin, Nonlinear fuzzy H’ guidance law with saturation of actuators against maneuvering targets, IEEE Transactions on Control Systems Technology, 10(6) (2002) 769-779.
[11] C.D. Yang, H.Y. Chen, Nonlinear H robust guidance law for homing missiles, Journal of Guidance, Control, and Dynamics, 21(6) (1998) 882-890.
[12] A.V. Savkin, P.N. Pathirana, F.A. Faruqi, Problem of precision missile guidance: LQR and H’ control frameworks, IEEE Transactions on Aerospace and Electronic Systems, 39(3) (2003) 901-910.
[13] C.S. Shieh, Tunable H’ robust guidance law for homing missiles, IEE Proceedings-Control Theory and Applications, 151(1) (2004) 103-107.
[14] C.D. Yang, H.Y. Chen, Three-dimensional nonlinear H’guidance law, International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal, 11(2) (2001) .921-901
[15] J. Sun, C. Liu, Finite-horizon differential games for missile–target interception system using adaptive dynamic programming with input constraints, International Journal of Systems Science, 49(2) (2018) 264-283.
[16] J. Sun, C. Liu, Q. Ye, Robust differential game guidance laws design for uncertain interceptor-target engagement via adaptive dynamic programming, International Journal of Control, 90(5) (2017) 990-1004.
[17] F.P. Adler, Missile guidance by three-dimensional proportional navigation, Journal of Applied Physics, 27(5) (1956) 500-507.
[18] M. Abu-Khalaf, F.L. Lewis, Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach, Automatica, 41(5) (2005) 779-791.
[19] T.M. Apostol, Mathematical analysis, Addison-Wesley Reading, 1964.
[20] M. Abu-Khalaf, F.L. Lewis, J. Huang, Policy iterations on the Hamilton–Jacobi–Isaacs equation for H’ state feedback control with input saturation, IEEE Transactions on Automatic Control, 51(12) (2006) 1989-1995.
[21] M. Abu-Khalaf, F.L. Lewis, J. Huang, Neurodynamic programming and zero-sum games for constrained control systems, IEEE Transactions on Neural Networks, 19(7) (2008) 1243-1252.
[22] C.F. Lin, Modern navigation, guidance, and control processing, Prentice Hall Englewood Cliffs, NJ, 1991.