مطالعه آزمایشگاهی اثر نوع ماده سورفاکتانت بر پایداری و تحرک فوم با رویکرد ازدیاد برداشت نفت

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

از جمله روش‌های نو ظهور در افزایش بازیافت نفت، تزریق فوم به درون مخازن نفتی است. مهمترین محدودیت در استفاده از فوم در روش‌های بازیافت نفت، حفظ پایداری آن در مواجه با فاز نفتی است. در این پژوهش سعی شده است تا با ساخت بسترهای آزمایشگاهی، عوامل موثر بر پایداری فوم و ویسکوزیته ظاهری آن بررسی گردد. پایداری توده فوم، با اندازه‌گیری تغییر ارتفاع انواع فوم درون ستون عمودی مطالعه شده است. پایداری حباب‌های فوم با ساخت یک سلول هل‌شاو شفاف مجهز به سنسورهای فشار بررسی شده است. نتایج نشان می‌دهد که نوع ماده سورفاکتانت اثر قابل توجهی در پایداری حباب‌های فوم دارد. در ابتدا فوم‌های سدیم دودسیل سولفات و کوکامیدپروپیل هایدروکسی سولتین به ترتیب بیشترین پایداری را در حضور و عدم حضور نفت نشان دادند. اما با ترکیب 1:1 آن‌ها، پایداری فوم به میزان قابل ملاحظه‌ای افزایش یافت. نتایج مطالعات اثبات می‌کند فوم با بافت ریزتر، ویسکوزیته ظاهری بالاتری دارد. همچنین کیفیت فوم به‌طور مستقیم، و نرخ جریان فوم به‌طور معکوس بر ویسکوزیته ظاهری فوم تأثیر می‌گذارد؛ اما با افزایش نرخ جریان، وابستگی ویسکوزیته ظاهری به کیفیت فوم به شدت کاهش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental Study of Surfactant Type Effects on the Foam Stability and Mobility With the Approach of Enhancing Oil Recovery

نویسندگان [English]

  • SMH Razavi
  • MM Shahmardan
  • Mohsen Nazari
  • Mahmood Norouzi
Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran
چکیده [English]

One of the methods to enhance oil recovery is the injection of foam into oil reservoirs. The most important restriction on the use of foam in enhancing oil recovery methods is maintaining its stability in the face of the oil phase. In this study, we tried to investigate the factors affecting the foam stability and its apparent viscosity by making laboratory setups. The stability of the bulk foam has been studied by measuring the height variation of the foam types within the vertical column. The stability of the foam bubbles has been investigated by making a transparent Hele-Shaw cell equipped with pressure sensors. The results show that the type of surfactant has a significant effect on the stability of the foam bubbles. Initially, sodium dodecyl sulfate and cocamido propyl hydroxyl sultaine foams showed the highest stability in the presence and absence of oil, respectively. But with the 1: 1 combination of them, the foam stability significantly increases. The results show that foam with a finer texture has a higher viscosity. Also, the quality of the foam directly, and the foam flow rate adversely, affect its apparent viscosity; however, as the foam flow rate increases, its dependence on foam quality is greatly reduced.

کلیدواژه‌ها [English]

  • Oil recovery
  • Experimental study
  • Surfactant
  • Foam stability
[1] G.M. Homsy, Viscous Fingering in Porous Media, Annual Review of Fluid Mechanics, 19(1) (1987) 271-311.
[2] K. Ma, R. Liontas, C.A. Conn, G.J. Hirasaki, S.L. Biswal, Visualization of improved sweep with foam in heterogeneous porous media using microfluidics, Soft Matter, 8(41) (2012) 10669-10675.
[3] G.J. Hirasaki, J.B. Lawson, Mechanisms of Foam Flow in Porous Media: Apparent Viscosity in Smooth Capillaries,  (1985).
[4] J.S. Lioumbas, E. Georgiou, M. Kostoglou, T.D. Karapantsios, Foam free drainage and bubbles size for surfactant concentrations below the CMC, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 487 (2015) 92-103.
[5] S. Babamahmoudi, S. Riahi, Application of nano particle for enhancement of foam stability in the presence of crude oil: Experimental investigation, Journal of Molecular Liquids, 264 (2018).
[6] L.L. Schramm, Foams: fundamentals and applications in the petroleum industry, An American Chemical Society (1994).
[7] R. Farajzadeh, A. Andrianov, R. Krastev, G.J. Hirasaki, W.R. Rossen, Foam-oil interaction in porous media: Implications for foam assisted enhanced oil recovery, Advances in Colloid and Interface Science, 183–184 (2012) 1-13.
[8] A. Andrianov, R. Farajzadeh, M. Mahmoodi Nick, M. Talanana, P. L. J. Zitha, Immiscible foam for enhancing oil recovery: bulk and porous media experiments, ACS Publication,  (2012) 2214-2226.
[9] S.A. Farzaneh, M. Sohrabi, Experimental investigation of CO2-foam stability improvement by alkaline in the presence of crude oil, Chemical Engineering Research and Design, 94 (2015) 375-389.
[10] M. Simjoo, T. Rezaei, A. Andrianov, P.L.J. Zitha, Foam stability in the presence of oil: Effect of surfactant concentration and oil type, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 438 (2013) 148-158.
[11] A. Shokrollahi, M.H. Ghazanfari, A. Badakhshan, Application of foam floods for enhancing heavy oil recovery through stability analysis and core flood experiments, The Canadian Journal of Chemical Engineering, 92(11) (2014) 1975-1987.
[12] K. Osei-Bonsu, N. Shokri, P. Grassia, Foam stability in the presence and absence of hydrocarbons: From bubble- to bulk-scale, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 481 (2015) 514-526.
[13] H. Cubillos, J. Montes, C. Prieto, P. Romero, Assessment of Foam for GOR Control to Optimize Miscible Gas Injection Recovery, in, Society of Petroleum Engineers, 2012.
[14] M. Dalland, J.E. Hanssen, T.S.m. Kristiansen, Oil interaction with foams under static and flowing conditions in porous media, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 82(2) (1994) 129-140.
[15] H. Caps, N. Vandewalle, G. Broze, Foaming dynamics in Hele-Shaw cells, Physical Review E, 73(6) (2006) 065301.
[16] D.J. Durian, Foam Mechanics at the Bubble Scale, Physical Review Letters, 75(26) (1995) 4780-4783.
[17] R. Rafati, O. Kehinde Oludara, S. Amin, H. Haddad, Hamidi, D. Rama Rao Karri, Experimental investigation of emulsified oil dispersion on bulk foam stability,  (2018).
[18] R. Rafati, A.S. Haddad, H. Hamidi, Experimental study on stability and rheological properties of aqueous foam in the presence of reservoir natural solid particles, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 509 (2016) 19-31.
[19] R. Aveyard, B.P. Binks, P.D.I. Fletcher, T.G. Peck, C.E. Rutherford, Aspects of aqueous foam stability in the presence of hydrocarbon oils and solid particles, Advances in Colloid and Interface Science, 48 (1994) 93-120.
[20] K. Mannhardt, J.J. Novosad, L.L. Schramm, Foam/Oil Interations at Reservoir Conditions, in, Society of Petroleum Engineers, 1998.
[21] F.M. Llave, F.T.H. Chung, R.W. Louvier, D.A. Hudgins, Foams as Mobility Control Agents for Oil Recovery by Gas Displacement, in, Society of Petroleum Engineers, 1990.
[22] K. Osei-Bonsu, N. Shokri, P. Grassia, Fundamental investigation of foam flow in a liquid-filled Hele-Shaw cell, Journal of Colloid and Interface Science, 462 (2016) 288-296.
[23] X. Duan, J. Hou, T. Cheng, S. Li, Y. Ma, Evaluation of oil-tolerant foam for enhanced oil recovery: Laboratory study of a system of oil-tolerant foaming agents, Journal of Petroleum Science and Engineering, 122 (2014) 428-438.
[24] L. Lobo, D.T. Wasan, Mechanisms of aqueous foam stability in the presence of emulsified non-aqueous-phase liquids: structure and stability of the pseudoemulsion film, Langmuir, 9(7) (1993) 1668-1677.
[25] K. Koczo, L.A. Lobo, D.T. Wasan, Effect of oil on foam stability: Aqueous foams stabilized by emulsions, Journal of Colloid and Interface Science, 150(2) (1992) 492-506.
[26] D.G. Elka S. Basheva, Nikolai D. Denkov, Kenichi Kasuga, Naoki Satoh, and Kaoru Tsujii, Role of Betaine as Foam Booster in the Presence of Silicone Oil Drops, Langmuir, 16(3) (2000) 1000–1013.
[27] W. Yan, C.A. Miller, G.J. Hirasaki, Foam sweep in fractures for enhanced oil recovery, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 282–283 (2006) 348-359.
[28] M. BJ, Test data fill theory gap on using foam as a drilling fluid, Oil&Gas,  (1971) 96-100.
[29] i. Cantat, Liquid meniscus friction on a wet plate: Bubbles, lamellae, and foams, Physics of Fluids, 25(3) (2013) 031303.