تحلیل انتقال حرارت گذرا غیرخطی با استفاده از دو روش انتگرال‌گیری با توزیع متفاوت نقاط انتگرال‌گیری در دامنه در یک فرمولاسیون بدون مش

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه یزد، یزد، ایران

2 دانشکده مهندسی مکانیک؛ دانشگاه یزد، یزد، ایران.

3 دانشکده مهندسی مکانیک، دانشگاه شیراز، شیراز، ایران.

چکیده

در این مقاله، مسئله انتقال حرارت گذرای غیرخطی، با هر دو شرط مرزی همرفتی و تابشی، مطالعه شده است. فرمولاسیون بدون مش درون‌یابی نقطه‌ای شعاعی در ترکیب با دوروش انتگرال‌گیری تبدیل کارتزین و روش مربعی گاوس که از سلول پس‌زمینه استفاده می‌کند؛ برای محاسبه انتگرال‌های دامنه‌ای، به‌کار رفته است. ابتدادمای حاصل از حل تحلیلی مسئله انتقال حرارت گذرا با شرایط مرزی همرفتی و تابشی در یک دامنه همگن، با نتایج حل بدون مش مقایسه و همخوانی آن‌ها تایید شده است. سپس، مسئله انتقال حرارت گذرا با هر دو نوع شرط مرزی در نمونه‌های کامپوزیت لایه‌ای و مدرج تابعی، با استفاده از هر دو روش انتگرال‌گیری ذکر شده در فرمولاسیون بدون مش، حل شده است و دماهای به‌دست آمده با دمای حاصل از حل مسئله مشابه با نرم‌افزار آباکوس، مقایسه شده‌اند. مطابق نتایج حاصله، استفاده از روش تبدیل کارتزین در مقایسه با روش سلول پس‌زمینه، در مسائل با شرایط مرزی همرفتی حداقل خطا را به نصف و در مسائل با شرایط مرزی تشعشعی، خطا را تا یک چهارم کاهش می‌دهد. همچنین، این روش عددی یک روش بدون مش است که به هیچ مش‌بندی نیاز ندارد. میزان خطا با استفاده از روش سلول پس‌زمینه در مسائل دارای شرایط مرزی تشعشعی در مقایسه با شرایط مرزی همرفتی، بیشتر است. همین موضوع، مزیت استفاده از روش تبدیل کارتزین را درمسائل با شرط مرزی تشعشعی، که به دلیل وابسته بودن شرایط مرزی به دما، میزان غیرخطی بودن مسئله در آن‌ها بیشتر است؛ نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Nonlinear Transient Heat Transfer Analysis Using Two Integration Methods with Different Distributions of Integration Points in the Domain in a Meshless Formulation

نویسندگان [English]

  • sahar kooshki 1
  • mahmoud khodadad 2
  • Seyed Amir Khosravifard 3
1 Department of mechanical engineering, Faculty of engineering, Yazd University, Yazd, Iran.
2 department of mechanical engineering, Yazd University, Yazd, Iran.
3 Department of mechanical engineering, Shiraz University, Shiraz, Iran.
چکیده [English]

In this article, the transient heat transfer problem with both convection and radiation boundary conditions is studied. The meshless radial point interpolation method is implemented in this numerical study. Also, two integration methods, the Cartesian transformation method and the Gaussian quadrature method which uses background cells, are employed for computation of the domain integral. First, a homogenous medium with both convection and radiation boundary conditions is considered. The temperature distribution obtained by the proposed meshless method is compared with the analytical solution for a heat transfer problem and excellent agreement is observed. Then, a number of example problems in a layered composite and a functionally graded sample with both convection and radiation boundary conditions are solved and the temperature results are compared with those of ABAQUS software. Through the numerical examples it is observed that using the cartesian transformation method in comparison with the background cell method in convection boundary conditions reduces the error to half and in radiation boundary conditions reduces the error to one-quarter. This numerical method is a meshless method which does not require any background mesh. Moreover, the amount of error using the background cell method in problems with radiation boundary conditions is more than those with convection boundary conditions. This shows the advantage of using the cartesian transformation method in problems with radiation boundary condition which have a higher degree of nonlinearity, due to the temperature-dependent boundary conditions.

کلیدواژه‌ها [English]

  • Convection-radiation boundary conditions
  • Meshless method
  • Nonlinear transient heat transfer
  • Cartesian transformation method
  • Background cell
[1] R. Joshi, S. Alwarappan, M. Yoshimura, V. Sahajwalla, Y. Nishina, Graphene oxide: the new membrane material, Applied Materials Today, 1(1) (2015) 1-12.
[2] Y. Torres, P. Trueba, J. Pavón, E. Chicardi, P. Kamm, F. García-Moreno, J. Rodríguez-Ortiz, Design, processing and characterization of titanium with radial graded porosity for bone implants, Materials & Design, 110 (2016) 179-187.
[3] S. Naga, M. Awaad, H. El-Maghraby, A. Hassan, M. Elhoriny, A. Killinger, R. Gadow, Effect of La2Zr2O7 coat on the hot corrosion of multi-layer thermal barrier coatings, Materials & Design, 102 (2016) 1-7.
[4] P. Miranzo, M.I. Osendi, Thermal conductivity of a ZrO2–Ni functionally graded coatings, Scripta Materialia, 58(11) (2008) 973-976.
[5] J. Sladek, V. Sladek, J. Krivacek, C. Zhang, Local BIEM for transient heat conduction analysis in 3-D axisymmetric functionally graded solids, Computational mechanics, 32(3) (2003) 169-176.
[6] A. Khosravifard, M. Hematiyan, L. Marin, Nonlinear transient heat conduction analysis of functionally graded materials in the presence of heat sources using an improved meshless radial point interpolation method, Applied Mathematical Modelling, 35(9) (2011) 4157-4174.
[7] M. Dashti Ardakani, M. Khodadad, Identification of thermal conductivity and the shape of an inclusion using the boundary elements method and the particle swarm optimization algorithm, Inverse Problems in Science and Engineering, 17(7) (2009) 855-870.
[8] W. Ge, C. Zhao, B. Wang, Thermal radiation and conduction in functionally graded thermal barrier coatings. Part I: Experimental study on radiative properties, International Journal of Heat and Mass Transfer, 134 (2019) 101-113.
[9] P. Wen, Y. Hon, Y. Xu, Inverse heat conduction problems by using particular solutions, Heat Transfer—Asian Research, 40(2) (2011) 171-186.
[10] J. Wang, G. Liu, On the optimal shape parameters of radial basis functions used for 2-D meshless methods, Computer methods in applied mechanics and engineering, 191(23) (2002) 2611-2630.
[11] J. Wang, G. Liu, A point interpolation meshless method based on radial basis functions, International Journal for Numerical Methods in Engineering, 54(11) (2002) 1623-1648.
[12] G. Liu, K. Dai, K. Lim, Y. Gu, A radial point interpolation method for simulation of two-dimensional piezoelectric structures, Smart Materials and Structures, 12(2) (2003) 171.
[13] G.-R. Liu, G. Zhang, Y. Gu, Y. Wang, A meshfree radial point interpolation method (RPIM) for three-dimensional solids, Computational Mechanics, 36(6) (2005) 421-430.
[14] G.-R. Liu, Meshfree methods: moving beyond the finite element method, Taylor & Francis, 2009.
[15] G.-R. Liu, Y.-T. Gu, An introduction to meshfree methods and their programming, Springer Science & Business Media, 2005.
[16] X.-H. Wu, W.-Q. Tao, Meshless method based on the local weak-forms for steady-state heat conduction problems, International Journal of Heat and Mass Transfer, 51(11-12) (2008) 3103-3112.
[17] A. Singh, I.V. Singh, R. Prakash, Meshless element free Galerkin method for unsteady nonlinear heat transfer problems, International Journal of Heat and Mass Transfer, 50(5-6) (2007) 1212-1219.
[18] J.N. Reddy, An Introduction to the Finite Element Method, (1993) 227–230.
[19] J.N. Reddy, D.K. Gartling, The finite element method in heat transfer and fluid dynamics, CRC press, 2010.
[20] A. Khosravifard, M.R. Hematiyan, A new method for meshless integration in 2D and 3D Galerkin meshfree methods, Engineering Analysis with Boundary Elements, 34(1) (2010) 30-40.
[21] Y. Cengel, Heat and mass transfer: fundamentals and applications, McGraw-Hill Higher Education, 2014.
[22] M. MUNRO, Evaluated material properties for a sintered alpha‐alumina, Journal of the American Ceramic Society, 80(8) (1997) 1919-1928.
[23] P. Auerkari, Mechanical and physical properties of engineering alumina ceramics, Technical Research Centre of Finland Espoo, 1996.
[24] K. Schlichting, N. Padture, P. Klemens, Thermal conductivity of dense and porous yttria-stabilized zirconia, Journal of materials science, 36(12) (2001) 3003-3010.
[25] R. Taylor, X. Wang, X. Xu, Thermophysical properties of thermal barrier coatings, Surface and coatings technology, 120 (1999) 89-95.