مدل‌سازی جریان و انتقال حرارت دوفازی در داخل کانال و اطراف لوله با روش لتیس بولتزمن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده فنی، دانشگاه گیلان، رشت، ایران

2 گیلان*مهندسی مکانیک

3 دانشگاه تهران

چکیده

تعیین مشخصه‌های دینامیکی و دمایی جریان دوفازی داخل کانال و فیلم‌ریزان روی لوله از اهمیت بالایی برخوردار است. با توجه به تأثیر عمده نیروی کشش سطحی و حجم محاسبات مرتبط با دقت و پایداری محاسبه نیروهای ریزمقیاس، کاربرد روش مسکوسکوپیک لتیس بولتزمن در حال گسترش است. در این مطالعه با استفاده از روش لی و مدل میدان فازی و همچنین روش اسکالر منفعل دمایی، جریان و انتقال حرارت فیلم مادون‌سرد ریزان داخل کانال بخار و اطراف لوله افقی مدل‌سازی شده است. شرط‌های مرزی بهینه برای سطوح منحنی و مرزهای جانبی در حالت باز و بسته بررسی شده است. نسبت چگالی مدل‌سازی ۲۰، نسبت سایر خواص مطابق با سیال آب و قطر خارجی لوله 9/28میلی‌متر است. میدان جریان، دما، و فشار ارائه و جزئیات رفتاری از جمله روند پیشروی مرز مشترک، جریان‌های چرخشی و ناسلت مشخص شده است. اعتبار روش بر اساس قانون لاپلاس، مدل همرفت دوفازی رایلی-بنارد، تغییرات لایه مرزی حرارتی با ضخامت فیلم‌ریزان روی لوله، اثر رینولدز بر ناسلت، و بقای جرم دامنه تعیین شده است. بر اساس نتایج، این روش در مدلسازی جریان و انتقال حرارت دوفازی اطراف سطوح منحنی با حفظ پایداری در نسبت پارامترهای فیزیکی ارائه شده از دقت مناسب برخوردار است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulation of Two-Phase Flow and Heat Transfer in a Channel and around a Tube by Lattice-Boltzmann Method

نویسندگان [English]

  • Sima Bajalan 1
  • Ramin Kouhi Kamali 2
  • Mohammad Hasan Rahimian 3
1 Ph.D. Student, Department of Mechanical Engineering, College of Engineering, Guilan University
2 Associate Professor, Department of Mechanical Engineering, College of Engineering, Guilan University
3 Associate Professor, Department of Mechanical Engineering, College of Engineering, Tehran University
چکیده [English]

Determination of multiphase flow dynamics and thermal behavior of two-phase flow in a channel are of importance. The small-scale surface tension effect and related simulation efficiency, precision, and stability, have caused mesoscopic Lattice Boltzmann method broadening application. In the current study, the thermal-hydraulic behavior of subcooled falling flow in a vertical channel and around a single horizontal tube is simulated by using the Lee method and phase-filed model, and thermal passive scalar model. The modified curved boundary conditions and two different boundary conditions for side boundaries are investigated. The density ratio is 20 and other property’s ratios of water are applied, and the outside diameter of the tube is 28.9mm. The flow, temperature, and pressure fields are presented and a detailed understanding of the movement of the three-phase contact line, circulating flow and local and average Nusselt numbers are determined. The film thickness, thermal boundary layer variation by the film thickness, Reynold number effect on Nusselt number and mass conservation are investigated as verification. The results have shown good consistency and high effectiveness in the simulation of multiphase gas-liquid flows in the presence of a circular obstacle, and for viscosity and thermal diffusivity ratios of water.

کلیدواژه‌ها [English]

  • Lattice Boltzmann
  • Falling film
  • Horizontal tube
  • Two-phase flow
  • Heat transfer
[1] S.M. Hosseini, J.J. Feng, Pressure boundary conditions for computing incompressible flows with SPH, Journal of Computational physics, 230(19) (2011) 7473-7487.
[2] A. Mussa, P. Asinari, L.-S. Luo, Lattice Boltzmann simulations of 2D laminar flows past two tandem cylinders, Journal of computational physics, 228(4) (2009) 983-999.
[3] P. Wang, Z. Guo, A semi-implicit gas-kinetic scheme for smooth flows, Computer Physics Communications, 205 (2016) 22-31.
[4] B. Narváez-Romo, J.R. Simões-Moreira, Falling Film Evaporation: An Overview, in:  Proceedings of 22nd International Congress of Mechanical Engineering–COBEM, 2013, pp. 3-7.
[5] S. Mirjalili, S.S. Jain, M. Dodd, Interface-capturing methods for two-phase flows: An overview and recent developments, Center for Turbulence Research Annual Research Briefs,  (2017) 117-135.
[6] Z.-H. Liu, Q.-Z. Zhu, Heat transfer in a subcooled water film falling across a horizontal heated tube, Chemical Engineering Communications, 192(10) (2005) 1334-1346.
[7] V. Ribeiro, P. Coelho, F. Pinho, M. Alves, Laminar Flow Past a Confined Cylinder, in:  Conferência Nacional em Mecânica de Fluidos, 2009.
[8] A. Kumar, Numerical Study of Falling Film Thickness on Horizontal Circular Tube-A CFD Approach, Int J Adv Technol, 7(169) (2016) 2.
[9] I. Hassan, A. Sadikin, N.M. Isa, The numerical modelling of falling film thickness flow on horizontal tubes, in:  AIP Conference Proceedings, AIP Publishing, 2017, pp. 020020.
[10] O. Filippova, D. Hänel, Boundary-fitting and local grid refinement for lattice-BGK models, International Journal of Modern Physics C, 9(08) (1998) 1271-1279.
[11] S. Mirjalili, C.B. Ivey, A. Mani, Cost and accuracy comparison between the diffuse interface method and the geometric volume of fluid method for simulating two-phase flows, in:  APS Meeting Abstracts, 2016.
[12] K. Sankaranarayanan, I. Kevrekidis, S. Sundaresan, J. Lu, G. Tryggvason, A comparative study of lattice Boltzmann and front-tracking finite-difference methods for bubble simulations, International Journal of Multiphase Flow, 29(1) (2003) 109-116.
[13] L. Scarbolo, D. Molin, P. Perlekar, M. Sbragaglia, A. Soldati, F. Toschi, Unified framework for a side-by-side comparison of different multicomponent algorithms: Lattice Boltzmann vs. phase field model, Journal of Computational Physics, 234 (2013) 263-279.
[14] M. Dzikowski, L. Jasinski, M. Dabrowski, Depth-averaged Lattice Boltzmann and Finite Element methods for single-phase flows in fractures with obstacles, Computers & Mathematics with Applications, 75(10) (2018) 3453-3470.
[15] S. Ryu, S. Ko, A comparative study of lattice Boltzmann and volume of fluid method for two-dimensional multiphase flows, Nuclear Engineering and Technology, 44(6) (2012) 623-638.
[16] S. Mukherjee, A. Zarghami, C. Haringa, K. van As, S. Kenjereš, H.E. Van den Akker, Simulating liquid droplets: A quantitative assessment of lattice Boltzmann and Volume of Fluid methods, International Journal of Heat and Fluid Flow, 70 (2018) 59-78.
[17] T. Lee, Effects of incompressibility on the elimination of parasitic currents in the lattice Boltzmann equation method for binary fluids, Computers & Mathematics with Applications, 58(5) (2009) 987-994.
[18] M.A. Hatani, M. Farhadzadeh, M.H. Rahimian, Investigation of vapor condensation on a flat plate and horizontal cryogenic tube using lattice Boltzmann method, International Communications in Heat and Mass Transfer, 66 (2015) 218-225.
[19] K. Fallah, A. Fardad, N. Sedaghatizadeh, E. Fattahi, A. Ghaderi, Numerical simulation of flow around two rotating circular cylinders in staggered arrangement by multi-relaxation-time lattice Boltzmann method at low Reynolds number, World Applied Sciences Journal, 15(4) (2011) 544-554.
[20] R. Mei, D. Yu, W. Shyy, L.-S. Luo, Force evaluation in the lattice Boltzmann method involving curved geometry, Physical Review E, 65(4) (2002) 041203.
[21] Z. Guo, C. Zheng, B. Shi, An extrapolation method for boundary conditions in lattice Boltzmann method, Physics of fluids, 14(6) (2002) 2007-2010.
[22] T. Inamuro, M. Yoshino, H. Inoue, R. Mizuno, F. Ogino, A lattice Boltzmann method for a binary miscible fluid mixture and its application to a heat-transfer problem, Journal of Computational Physics, 179(1) (2002) 201-215.
[23] H. Safari, M.H. Rahimian, M. Krafczyk, Extended lattice Boltzmann method for numerical simulation of thermal phase change in two-phase fluid flow, Physical Review E, 88(1) (2013) 013304.
[24] D.M. S. Gokaltun, A lattice Bo Simulation of Gas Bubble in Multiphase Flows With high DensityRatios, WM2011 Conference,  Phoneis.,  ( 2011).
[25] H. Zheng, C. Shu, Y.-T. Chew, A lattice Boltzmann model for multiphase flows with large density ratio, Journal of Computational Physics, 218(1) (2006) 353-371.
[26] S. Tilehboni, K. Sedighi, M. Farhadi, E. Fattahi, Lattice Boltzmann simulation of deformation and breakup of a droplet under gravity force using interparticle potential model, International Journal of Engineering-Transactions A: Basics, 26(7) (2013) 781.
[27] J. Szekely, M. Todd, Natural convection in a rectangular cavity transient behavior and two phase systems in laminar flow, International Journal of Heat and Mass Transfer, 14(3) (1971) 467-482.
[28] R.D. Haberstroh, R.D. Reinders, Conducting-sheet model for natural convection through a density-stratified interface, International Journal of Heat and Mass Transfer, 17(2) (1974) 307-311.
[29] C. Wang, M. Sen, P. Vasseur, Analytical investigation of Bénard-Marangoni convection heat transfer in a shallow cavity filled with two immiscible fluids, Applied Scientific Research, 48(1) (1991) 35-53.
[30] D. Yung, J. Lorenz, E. Ganic, Vapor/liquid interaction and entrainment in shell-and-tube evaporators, Argonne National Lab., Ill.(USA), 1978.
[31] A. Bejan, Convection heat transfer, John wiley & sons, 2013.