ساخت و آزمایش سیال مگنتورئولوژیکال بهینه و مدل‌سازی دمپر مگنتورئولوژیکال دو مخزنه با استفاده از مدل غیر نیوتونی اصلاح‌شده جدید و روش‌های تحلیلی شبه استاتیک، تحلیلی ناپایا، عددی و آزمایشگاهی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه صنعتی شاهرود، شاهرود، ایران

2 استاد، دانشکده مهندسی مکانیک، دانشگاه صنعتی شاهرود، شاهرود، ایران

3 دانشیار، دانشکده مهندسی مکانیک، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

  سیال‌های مگنتورئولوژیکال، یکی از انواع سیال‌های هوشمند می‌باشند که به‌طور گسترده در کاربردهای مهندسی ازجمله دمپینگ ارتعاشات در دمپرهای مگنتورئولوؤیکال، بکار می‌روند و تحت میدان مغناطیسی دارای تنش تسلیم و ویسکوزیته قابل‌افزایش و کنترل می‌باشند. در این پژوهش، پس از انجام آزمایش‌ روی سه نمونه پودر آهن کربونیل و تست پایداری، سیال بهینه انتخاب می‌شود. نتایج به‌دست‌آمده برای سیال بهینه ساخته‌شده با 85% وزنی پودر آهن، مشابه نتایج روغن لرد (ساخت آمریکا) می‌باشد. همچنین یک مدل غیر نیوتونی اصلاح‌شده جدید جهت مدل‌سازی رفتار سیال مگنتورئولوژیکال بهینه، ارائه شد که نسبت به مدل‌های متداول بینگهام پلاستیک و هرچل بالکلی، دارای دقت بیشتری بوده و در مدل‌سازی دینامیک سیالات محاسباتی قابل ‌استفاده است. سپس، ضمن مدل‌سازی یک نمونه دمپر مگنتورئولوژیکال با استفاده از مدل مذکور و مدل بینگهام پلاستیک و روش‌های دینامیک سیالات محاسباتی، تحلیلی شبه استاتیک و ناپایای ارائه‌شده، نتایج بدست آمده ااعتبارسنجی شد. نتایج حاصل نشان می‌دهد، در نظر نگرفتن اثر رقیق شوندگی سیال، تنش برشی سیال روی دیواره، ترم اینرسی و اثر میدان مغناطیسی بر ویسکوزیته پلاستیک، باعث خطای قابل‌توجه، بخصوص با افزایش میدان مغناطیسی، عدد رینولدز و عرض شیار پیستون می‌شود و روش‌های ارائه‌شده در این پژوهش، دقیق‌تر می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Manufacturing and Testing of an Optimized Magneto-Rheological Fluid and Modelling of a Twin Tube Magneto-Rheological Damper Using a Modified Non-Newtonian Model Using Analytical Quasi-Static, Analytical Unsteady, Numerical and Experimental Methods

نویسندگان [English]

  • Mohammad Mehdi Zolfagharian 1
  • Mohammad Hassan Kayhani 2
  • Mahmood Norouzi 3
1 Ph.D Student in Mechanical Engineering, Mechanical Engineering Department, Shahrood University of Technology, shahrood, Iran
2 Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran
3 Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran
چکیده [English]

Magneto-rheological fluids are one of the intelligent fluids which have been extensively used in engineering application including magneto-rheological dampers. Having yield stress in a magnetic field and ability to control and increase their viscosity are their most important characteristics. After three different carbonyl iron powders were subjected to analysis, five different magneto-rheological fluids were synthesized and were tested for stability and the optimized fluid obtained. The results obtained from the optimized magneto-rheological fluid with 85% (weight %) iron powder was similar to that of LORD oil. Also, a modified non-Newtonian rheological model was developed to predict the behavior of the optimized magneto-rheological fluid which is more accurate than Bingham and Herschel-Bulkley models and could be implemented in computational fluid dynamic modelling. The modelling of the damper was conducted by implementing modified non-Newtonian and Bingham models using analytical quasi-static, unsteady and computational fluid dynamicmethods and the results were validated with experimental data. The results show that neglecting factors including fluid shear thinning, wall shear stress and inertia term effects and effect of magnetic field on plastic viscosity in conventional modelling methods results in considerable error that will increase as magnetic field, Reynolds number and gap are increasing.

کلیدواژه‌ها [English]

  • Magneto-rheological fluid
  • Magneto-Rheological Damper
  • new modified non-Newtonian model
  • magnetic field
  • Damping force
منابع و مراجع
[1] D. Calarasu, C. Cotae, R. Olaru, Magnetic fluid brake, Journal of Magnetism and Magnetic Materials, 201(1-3) (1999) 401-403.
[2] K. Karakoc, E.J. Park, A. Suleman, Design considerations for an automotive magnetorheological brake, Mechatronics, 18(8) (2008) 434-447.
[3] J. Huang, J. Zhang, Y. Yang, Y. Wei, Analysis and design of a cylindrical magneto-rheological fluid brake, Journal of Materials Processing Technology, 129(1-3) (2002) 559-562.
[4] F. Bucchi, P. Forte, F. Frendo, R. Squarcini, A magnetorheological clutch for efficient automotive auxiliary device actuation, Frattura ed Integrita Strutturale, 7(23) (2013) 62-74.
[5] L. Wessling, Physical modeling of a clutch for heavy vehicles, CHALMERS UNIVERSITY OF TECHNOLOGY, Göteborg, Sweden, 2011.
[6] B. Kavlicoglu, F. Gordaninejad, Y. Liu, X. Wang, N. Cobanoglu, Magneto rheological Fluid Limited Slip Differential Clutch, Composite and Intelligent Materials Laboratory,  (2006).
[7] T. Stancioiu, D. Giuclea, M. Sireteanu, Modelling of Magnetorheological Damper Dynamic Behaviour by Genetic Algorithms Based Inverse Method. , PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A,, 5 (2004) 000 - 000.
[8] B. Spencer Jr, S. Dyke, M. Sain, J. Carlson, Phenomenological model for magnetorheological dampers, Journal of engineering mechanics, 123(3) (1997) 230-238.
[9] K.H. Guðmundsson, Design of a magnetorheological fluid for an MR prosthetic knee actuator with an optimal geometry, University of Iceland., Iceland, 2011.
[10] R.W. Phillips, Engineering applications of fluids with a variable yield stress, Ph.D, University of California, Berkeley, 1969.
[11] G. Yang, B. Spencer Jr, J. Carlson, M. Sain, Large-scale MR fluid dampers: modeling and dynamic performance considerations, Engineering structures, 24(3) (2002) 309-323.
[12] S. Hong, S. Choi, Y. Choi, N. Wereley, Non-dimensional analysis and design of a magnetorheological damper, Journal of Sound and Vibration, 288(4-5) (2005) 847-863.
[13] J.-H. Yoo, N.M. Wereley, Nondimensional analysis of annular duct flow in magnetorheological/electrorheological dampers, International Journal of Modern Physics B, 19(07n09) (2005) 1577-1583.
[14] S. Hong, N. Wereley, Y. Choi, S. Choi, Analytical and experimental validation of a nondimensional Bingham model for mixed-mode magnetorheological dampers, Journal of Sound and Vibration, 312(3) (2008) 399-417.
[15] D. Wang, H. Ai, W. Liao, A magnetorheological valve with both annular and radial fluid flow resistance gaps, Smart materials and structures, 18(11) (2009) 115001.
[16] A. Ghaffari, S.H. Hashemabadi, M. Ashtiani, A review on the simulation and modeling of magnetorheological fluids, Journal of intelligent material systems and structures, 26(8) (2015) 881-904.
[17] G.M. Kamath, M.K. Hurt, N.M. Wereley, Analysis and testing of Bingham plastic behavior in semi-active electrorheological fluid dampers, Smart Materials and Structures, 5(5) (1996) 576.
[18] J.-H. Yoo, N.M. Wereley, Quasi-steady axisymmetric Bingham-plastic model of magnetorheological flow damper behavior, in:  ASME 2005 International mechanical engineering congress and exposition, American Society of Mechanical Engineers Digital Collection, 2005, pp. 375-380.
[19] S.A. Khan, A. Suresh, N. Seetharamaiah, Principles, characteristics and applications of magneto rheological fluid damper in flow and shear mode, Procedia materials science, 6 (2014) 1547-1556.
[20] C.-I. Chen, Y.-T. Yang, Unsteady unidirectional flow of Bingham fluid between parallel plates with different given volume flow rate conditions, Applied Mathematical Modelling, 28(8) (2004) 697-709.
[21] M. Yu, S. Wang, J. Fu, Y. Peng, Unsteady flow damping force prediction of MR dampers subjected to sinusoidal loading, in:  Journal of Physics: Conference Series, IOP Publishing, 2013, pp. 012052.
[22] D. Susan-Resiga, A rheological model for magneto-rheological fluids, Journal of Intelligent Material Systems and Structures, 20(8) (2009) 1001-1010.
[23] D.A. Bompos, P.G. Nikolakopoulos, CFD simulation of magnetorheological fluid journal bearings, Simulation Modelling Practice and Theory, 19(4) (2011) 1035-1060.
[24] Z. Parlak, T. Engin, İ. Çallı, Optimal design of MR damper via finite element analyses of fluid dynamic and magnetic field, Mechatronics, 22(6) (2012) 890-903.
[25] Z. Parlak, T. Engin, Time-dependent CFD and quasi-static analysis of magnetorheological fluid dampers with experimental validation, International Journal of Mechanical Sciences, 64(1) (2012) 22-31.
[26] E. Gedik, H. Kurt, Z. Recebli, C. Balan, Two-dimensional CFD simulation of magnetorheological fluid between two fixed parallel plates applied external magnetic field, Computers & fluids, 63 (2012) 128-134.
[27] F. Omidbeygi, S. Hashemabadi, Experimental study and CFD simulation of rotational eccentric cylinder in a magnetorheological fluid, Journal of Magnetism and Magnetic Materials, 324(13) (2012) 2062-2069.
[28] M.S.A. Khan, A. Suresh, N.S. Ramaiah, Investigation on the performance of MR damper with various piston configurations, International Journal of Scientific and Research Publications, 2(12) (2012) 4.
[29] S. Chen, W. Shi, Study of corrugated disc rotary damper based on intelligent effect, Journal of Intelligent Material Systems and Structures, 23(9) (2012) 995-1000.
[30] B. Sapiński, M. Szczęch, CFD model of a magnetorheological fluid in squeeze mode, acta mechanica et automatica, 7(3) (2013) 180-183.
[31] J. Gołdasz, B. Sapiński, Application of CFD to modeling of squeeze mode magnetorheological dampers, acta mechanica et automatica, 9(3) (2015) 129-134.
[32] F. Gao, Y.-N. Liu, W.-H. Liao, Optimal design of a magnetorheological damper used in smart prosthetic knees, Smart Materials and Structures, 26(3) (2017) 035034.
[33] M.R. Jolly, J.W. Bender, J.D. Carlson, Properties and applications of commercial magnetorheological fluids, in:  Smart structures and materials 1998: passive damping and isolation, International Society for Optics and Photonics, 1998, pp. 262-275.
[34] G. Bossis, O. Volkova, S. Lacis, A. Meunier, Magnetorheology: fluids, structures and rheology, in:  Ferrofluids, Springer, 2002, pp. 202-230.
[35] J. Viota, J. De Vicente, J. Duran, A. Delgado, Stabilization of magnetorheological suspensions by polyacrylic acid polymers, Journal of colloid and interface science, 284(2) (2005) 527-541.
[36] N. Wereley, A. Chaudhuri, J.-H. Yoo, S. John, S. Kotha, A. Suggs, R. Radhakrishnan, B. Love, T. Sudarshan, Bidisperse magnetorheological fluids using Fe particles at nanometer and micron scale, Journal of Intelligent Material Systems and Structures, 17(5) (2006) 393-401.
[37] A. Roszkowski, M. Bogdan, W. Skoczynski, B. Marek, Testing viscosity of MR fluid in magnetic field, Measurement Science Review, 8(3) (2008) 58-60.
[38] J. Zhang, J.-q. Zhang, J.-f. Jia, Characteristic analysis of magnetorheological fluid based on different carriers, Journal of Central South University of Technology, 15(1) (2008) 252-255.
[39] M.S. Kim, Y.D. Liu, B.J. Park, C.-Y. You, H.J. Choi, Carbonyl iron particles dispersed in a polymer solution and their rheological characteristics under applied magnetic field, Journal of Industrial and Engineering Chemistry, 18(2) (2012) 664-667.
[40] S.E. Premalatha, R. Chokkalingam, M. Mahendran, Magneto mechanical properties of iron based MR fluids, Am. J. Polym. Sci, 2(4) (2012) 50-55.
[41] G. Wang, F. Zhou, Z. Lu, Y. Ma, X. Li, Y. Tong, X. Dong, Controlled synthesis of CoFe2O4/MoS2 nanocomposites with excellent sedimentation stability for magnetorheological fluid, Journal of Industrial and Engineering Chemistry, 70 (2019) 439-446.
[42] S. Sgobba, Physics and measurements of magnetic materials, in: CERN Accelerator School CAS 2009: Specialised Course on Magnets, Bruges, Belgium, 2009.
[43] G. Berselli, R. Vertechy, G. Vassura, Smart Actuation and Sensing Systems: Recent Advances and Future Challenges, BoD–Books on Demand, 2012.
[44] J.-H. YOO, N.M. WERELEY, NONDIMENSIONAL ANALYSIS OF ANNULAR DUCT FLOW IN MAGNETORHEOLOGICAL/ELECTRORHEOLOGICAL DAMPERS, in:  Electrorheological Fluids And Magnetorheological Suspensions (Ermr 2004), World Scientific, 2005, pp. 666-672.
[45] X. Zhu, X. Jing, L. Cheng, Magnetorheological fluid dampers: a review on structure design and analysis, Journal of intelligent material systems and structures, 23(8) (2012) 839-873.
[46] F.M. White, I. Corfield, Viscous fluid flow, McGraw-Hill New York, 2006.
[47] H.P. Gavin, Design method for high-force electrorheological dampers, Smart Materials and structures, 7(5) (1998) 664.
[48] M.R. Jolly, J.W. Bender, J.D. Carlson, Properties and Applications of Commercial Magnetorheological Fluids, Journal of Intelligent Material Systems and Structures, 10(1) (1999) 5–13.
[49] G.G. Stokes, On the effect of the internal friction of fluids on the motion of pendulums, Pitt Press Cambridge, Cambridge, 1851.
[50] U. Ferdek, J. Łuczko, Modeling and analysis of a twin-tube hydraulic shock absorber, Journal of Theoretical and Applied Mechanics, 50(2) (2012) 627-638.
[51] J.C. Dixon, The shock absorber handbook, Second ed., John Wiley & Sons, England, 2008.
[52] N.M. Wereley, L. Pang, Nondimensional analysis of semi-active electrorheological and magnetorheological dampers using approximate parallel plate models, Smart Materials and Structures, 7(5) (1998) 732.
[53] M.Ö. Çarpinlioğlu, An overview on pulsatile flow dynamics, Journal of Thermal Engineering, 1(6) (2015) 496-504.