منابع و مراجع
[1] D. Calarasu, C. Cotae, R. Olaru, Magnetic fluid brake, Journal of Magnetism and Magnetic Materials, 201(1-3) (1999) 401-403.
[2] K. Karakoc, E.J. Park, A. Suleman, Design considerations for an automotive magnetorheological brake, Mechatronics, 18(8) (2008) 434-447.
[3] J. Huang, J. Zhang, Y. Yang, Y. Wei, Analysis and design of a cylindrical magneto-rheological fluid brake, Journal of Materials Processing Technology, 129(1-3) (2002) 559-562.
[4] F. Bucchi, P. Forte, F. Frendo, R. Squarcini, A magnetorheological clutch for efficient automotive auxiliary device actuation, Frattura ed Integrita Strutturale, 7(23) (2013) 62-74.
[5] L. Wessling, Physical modeling of a clutch for heavy vehicles, CHALMERS UNIVERSITY OF TECHNOLOGY, Göteborg, Sweden, 2011.
[6] B. Kavlicoglu, F. Gordaninejad, Y. Liu, X. Wang, N. Cobanoglu, Magneto rheological Fluid Limited Slip Differential Clutch, Composite and Intelligent Materials Laboratory, (2006).
[7] T. Stancioiu, D. Giuclea, M. Sireteanu, Modelling of Magnetorheological Damper Dynamic Behaviour by Genetic Algorithms Based Inverse Method. , PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A,, 5 (2004) 000 - 000.
[8] B. Spencer Jr, S. Dyke, M. Sain, J. Carlson, Phenomenological model for magnetorheological dampers, Journal of engineering mechanics, 123(3) (1997) 230-238.
[9] K.H. Guðmundsson, Design of a magnetorheological fluid for an MR prosthetic knee actuator with an optimal geometry, University of Iceland., Iceland, 2011.
[10] R.W. Phillips, Engineering applications of fluids with a variable yield stress, Ph.D, University of California, Berkeley, 1969.
[11] G. Yang, B. Spencer Jr, J. Carlson, M. Sain, Large-scale MR fluid dampers: modeling and dynamic performance considerations, Engineering structures, 24(3) (2002) 309-323.
[12] S. Hong, S. Choi, Y. Choi, N. Wereley, Non-dimensional analysis and design of a magnetorheological damper, Journal of Sound and Vibration, 288(4-5) (2005) 847-863.
[13] J.-H. Yoo, N.M. Wereley, Nondimensional analysis of annular duct flow in magnetorheological/electrorheological dampers, International Journal of Modern Physics B, 19(07n09) (2005) 1577-1583.
[14] S. Hong, N. Wereley, Y. Choi, S. Choi, Analytical and experimental validation of a nondimensional Bingham model for mixed-mode magnetorheological dampers, Journal of Sound and Vibration, 312(3) (2008) 399-417.
[15] D. Wang, H. Ai, W. Liao, A magnetorheological valve with both annular and radial fluid flow resistance gaps, Smart materials and structures, 18(11) (2009) 115001.
[16] A. Ghaffari, S.H. Hashemabadi, M. Ashtiani, A review on the simulation and modeling of magnetorheological fluids, Journal of intelligent material systems and structures, 26(8) (2015) 881-904.
[17] G.M. Kamath, M.K. Hurt, N.M. Wereley, Analysis and testing of Bingham plastic behavior in semi-active electrorheological fluid dampers, Smart Materials and Structures, 5(5) (1996) 576.
[18] J.-H. Yoo, N.M. Wereley, Quasi-steady axisymmetric Bingham-plastic model of magnetorheological flow damper behavior, in: ASME 2005 International mechanical engineering congress and exposition, American Society of Mechanical Engineers Digital Collection, 2005, pp. 375-380.
[19] S.A. Khan, A. Suresh, N. Seetharamaiah, Principles, characteristics and applications of magneto rheological fluid damper in flow and shear mode, Procedia materials science, 6 (2014) 1547-1556.
[20] C.-I. Chen, Y.-T. Yang, Unsteady unidirectional flow of Bingham fluid between parallel plates with different given volume flow rate conditions, Applied Mathematical Modelling, 28(8) (2004) 697-709.
[21] M. Yu, S. Wang, J. Fu, Y. Peng, Unsteady flow damping force prediction of MR dampers subjected to sinusoidal loading, in: Journal of Physics: Conference Series, IOP Publishing, 2013, pp. 012052.
[22] D. Susan-Resiga, A rheological model for magneto-rheological fluids, Journal of Intelligent Material Systems and Structures, 20(8) (2009) 1001-1010.
[23] D.A. Bompos, P.G. Nikolakopoulos, CFD simulation of magnetorheological fluid journal bearings, Simulation Modelling Practice and Theory, 19(4) (2011) 1035-1060.
[24] Z. Parlak, T. Engin, İ. Çallı, Optimal design of MR damper via finite element analyses of fluid dynamic and magnetic field, Mechatronics, 22(6) (2012) 890-903.
[25] Z. Parlak, T. Engin, Time-dependent CFD and quasi-static analysis of magnetorheological fluid dampers with experimental validation, International Journal of Mechanical Sciences, 64(1) (2012) 22-31.
[26] E. Gedik, H. Kurt, Z. Recebli, C. Balan, Two-dimensional CFD simulation of magnetorheological fluid between two fixed parallel plates applied external magnetic field, Computers & fluids, 63 (2012) 128-134.
[27] F. Omidbeygi, S. Hashemabadi, Experimental study and CFD simulation of rotational eccentric cylinder in a magnetorheological fluid, Journal of Magnetism and Magnetic Materials, 324(13) (2012) 2062-2069.
[28] M.S.A. Khan, A. Suresh, N.S. Ramaiah, Investigation on the performance of MR damper with various piston configurations, International Journal of Scientific and Research Publications, 2(12) (2012) 4.
[29] S. Chen, W. Shi, Study of corrugated disc rotary damper based on intelligent effect, Journal of Intelligent Material Systems and Structures, 23(9) (2012) 995-1000.
[30] B. Sapiński, M. Szczęch, CFD model of a magnetorheological fluid in squeeze mode, acta mechanica et automatica, 7(3) (2013) 180-183.
[31] J. Gołdasz, B. Sapiński, Application of CFD to modeling of squeeze mode magnetorheological dampers, acta mechanica et automatica, 9(3) (2015) 129-134.
[32] F. Gao, Y.-N. Liu, W.-H. Liao, Optimal design of a magnetorheological damper used in smart prosthetic knees, Smart Materials and Structures, 26(3) (2017) 035034.
[33] M.R. Jolly, J.W. Bender, J.D. Carlson, Properties and applications of commercial magnetorheological fluids, in: Smart structures and materials 1998: passive damping and isolation, International Society for Optics and Photonics, 1998, pp. 262-275.
[34] G. Bossis, O. Volkova, S. Lacis, A. Meunier, Magnetorheology: fluids, structures and rheology, in: Ferrofluids, Springer, 2002, pp. 202-230.
[35] J. Viota, J. De Vicente, J. Duran, A. Delgado, Stabilization of magnetorheological suspensions by polyacrylic acid polymers, Journal of colloid and interface science, 284(2) (2005) 527-541.
[36] N. Wereley, A. Chaudhuri, J.-H. Yoo, S. John, S. Kotha, A. Suggs, R. Radhakrishnan, B. Love, T. Sudarshan, Bidisperse magnetorheological fluids using Fe particles at nanometer and micron scale, Journal of Intelligent Material Systems and Structures, 17(5) (2006) 393-401.
[37] A. Roszkowski, M. Bogdan, W. Skoczynski, B. Marek, Testing viscosity of MR fluid in magnetic field, Measurement Science Review, 8(3) (2008) 58-60.
[38] J. Zhang, J.-q. Zhang, J.-f. Jia, Characteristic analysis of magnetorheological fluid based on different carriers, Journal of Central South University of Technology, 15(1) (2008) 252-255.
[39] M.S. Kim, Y.D. Liu, B.J. Park, C.-Y. You, H.J. Choi, Carbonyl iron particles dispersed in a polymer solution and their rheological characteristics under applied magnetic field, Journal of Industrial and Engineering Chemistry, 18(2) (2012) 664-667.
[40] S.E. Premalatha, R. Chokkalingam, M. Mahendran, Magneto mechanical properties of iron based MR fluids, Am. J. Polym. Sci, 2(4) (2012) 50-55.
[41] G. Wang, F. Zhou, Z. Lu, Y. Ma, X. Li, Y. Tong, X. Dong, Controlled synthesis of CoFe2O4/MoS2 nanocomposites with excellent sedimentation stability for magnetorheological fluid, Journal of Industrial and Engineering Chemistry, 70 (2019) 439-446.
[42] S. Sgobba, Physics and measurements of magnetic materials, in: CERN Accelerator School CAS 2009: Specialised Course on Magnets, Bruges, Belgium, 2009.
[43] G. Berselli, R. Vertechy, G. Vassura, Smart Actuation and Sensing Systems: Recent Advances and Future Challenges, BoD–Books on Demand, 2012.
[44] J.-H. YOO, N.M. WERELEY, NONDIMENSIONAL ANALYSIS OF ANNULAR DUCT FLOW IN MAGNETORHEOLOGICAL/ELECTRORHEOLOGICAL DAMPERS, in: Electrorheological Fluids And Magnetorheological Suspensions (Ermr 2004), World Scientific, 2005, pp. 666-672.
[45] X. Zhu, X. Jing, L. Cheng, Magnetorheological fluid dampers: a review on structure design and analysis, Journal of intelligent material systems and structures, 23(8) (2012) 839-873.
[46] F.M. White, I. Corfield, Viscous fluid flow, McGraw-Hill New York, 2006.
[47] H.P. Gavin, Design method for high-force electrorheological dampers, Smart Materials and structures, 7(5) (1998) 664.
[48] M.R. Jolly, J.W. Bender, J.D. Carlson, Properties and Applications of Commercial Magnetorheological Fluids, Journal of Intelligent Material Systems and Structures, 10(1) (1999) 5–13.
[49] G.G. Stokes, On the effect of the internal friction of fluids on the motion of pendulums, Pitt Press Cambridge, Cambridge, 1851.
[50] U. Ferdek, J. Łuczko, Modeling and analysis of a twin-tube hydraulic shock absorber, Journal of Theoretical and Applied Mechanics, 50(2) (2012) 627-638.
[51] J.C. Dixon, The shock absorber handbook, Second ed., John Wiley & Sons, England, 2008.
[52] N.M. Wereley, L. Pang, Nondimensional analysis of semi-active electrorheological and magnetorheological dampers using approximate parallel plate models, Smart Materials and Structures, 7(5) (1998) 732.
[53] M.Ö. Çarpinlioğlu, An overview on pulsatile flow dynamics, Journal of Thermal Engineering, 1(6) (2015) 496-504.