[1]. M. C. Sukop and D. T. Thorne Jr, Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers. Springer, Heidelberg, Berlin, New York (2006).
[2]. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press: Oxford (2001).
[3]. H. Sajjadi, A.A. Delouei, Investigation of 3 Dimensional Nano fluid Natural Convection in Presence of Magnetic Field using Double Multi Relaxation Time Lattice Boltzmann Method, Amirkabir Journal of Mechanical Engineering, 51 (2019) 1-14.
[4]. M. Han, R. Ooka, H. Kikumoto, Lattice Boltzmann method-based large-eddy simulation of indoor isothermal airflow, International Journal of Heat and Mass Transfer, 130 (2019) 700-709.
[5]. H. Sajjadi, A. A. Delouei, M. Izadi, R. Mohebbi, Investigation of MHD natural convection in a porous media by double MRT lattice Boltzmann method utilizing MWCNT–Fe3O4/water hybrid nanofluid, International Journal of Heat and Mass Transfer, 132 (2019) 1087–1104.
[6]. H. Sajjadi, A. Amiri Delouei, M. Atashafrooz, M. Sheikholeslami, Double MRT Lattice Boltzmann simulation of 3-D MHD natural convection in a cubic cavity with sinusoidal temperature distribution utilizing nanofluid, International Journal of Heat and Mass Transfer, 126 (2018) 489–503.
[7]. H. Sajjadi, M. Salmanzadeh, G. Ahmadi, S. Jafari, Turbulent Indoor Airflow Simulation Using Hybrid LES/RANS Model Utilizing Lattice Boltzmann Method, Computers and fluids, 150 (2017) 66-73.
[8]. I.V. Miroshnichenko, A. Sheremet, Turbulent natural convection heat transfer in rectangular enclosures using experimental and numerical approaches: A review, Renewable and Sustainable Energy Reviews, 82 (2018) 40-59.
[9]. E. M. Smirnov, A. M. Levchenya, V. D. Zhukovskaya, RANS-based numerical simulation of the turbulent free convection vertical-plate boundary layer disturbed by a normal-to-plate circular cylinder, International Journal of Heat and Mass Transfer, 144 (2019) 118573.
[10]. D. C. Wilcox. Turbulence Modeling for CFD. DCW Industries, Inc., La Canada, California (1998).
[11]. P. Zhao, C. Wang, Z. Ge, J. Zhu, J. Liu, M. Ye, DNS of turbulent mixed convection over a vertical backward-facing step for lead-bismuth eutectic, International Journal of Heat and Mass Transfer, 127 (2018) 1215-1229.
[12]. H. Kim, A. Dehbi, J. Kalilainen, Measurements and LES computations of a turbulent particle-laden flow inside a cubical differentially heated cavity, Atmospheric Environment, 186 (2018) 216-228.
[13]. T.H. Hsu, P.T. Hsu, S.P. How, Mixed convection in a partially divided rectangular enclosure, Numerical Heat Transfer Part A, 31 (1997) 655–683.
[14]. F.J. Rey, E. Velasco, Experimental study of indoor air quality, energy saving and analysis of ventilation norms in acclimatised areas, Energy and Buildings 33 (2000) 57–67.
[15]. J.B. Jiang, X.L. Wang, Y.Z. Sun, Y.H. Zhang, Experimental and numerical study of airflows in a full-scale room, ASHRAE Transactions 115(2) (2009) 867–886.
[16]. Q. Chen, K. Lee, K. Mazumdar, S. Poussou, L. Wang, M. Wang, Zhang Z., Ventilation performance prediction for buildings: Model assessment, Building and Environment 45(2) (2010) 295–303.
[17]. M. Krafczyk, J. Tölke, L.S. Luo, Large eddy simulation with a multiple-relaxationtime LBE model. International Journal of Modern Physics B 17(1&2) (2003) 33-39.
[18]. S. Jafari and M. Rahnama, Shear-improved Smagorinsky modeling of turbulent channel flow using generalized Lattice Boltzmann equation. International Journal for Numerical Methods in Fluids, 67 (2011) 700–712.
[19]. N. B. Wood, A simple method for the calculation of turbulent deposition to smooth and rough surfaces. Journal of Aerosol Science 12 (1981) 275–290.
[20]. P. G. Papavergos, A. B. Hedley, Particle deposition behaviour from turbulence flows. Chemical Engineering Research and Design 62 (1984) 275–295.
[21]. H. G. Zhang, G. Ahmadi, Aerosol particle transport and deposition in vertical and horizontal turbulent duct flows, Journal of Fluid Mechanics 406 (2000) 55–80.
[22]. M. Salmanzadeh, M. Rahnama, G. Ahmadi, Effect of subgrid scales on large eddy simulation of particle deposition in a turbulent channel flow. Journal of Aerosol Science and Technology 44 (2010) 796–806.
[23]. L. Tian, G. Ahmadi, Particle deposition in turbulent duct flows—comparisons of different model predictions. Journal of Aerosol Science, 38 (2007) 377 – 397.
[24]. S. Jafari, M. Salmanzadeh, M. Rahnama, G. Ahmadi, Investigation of particle dispersion and deposition in a channel with a square cylinder obstruction using the lattice Boltzmann method, Journal of Aerosol Science 41(2) (2010) 198–206.
[25]. L. Ding, J.L.S. Fung, S. Seepana, A.C.K. Lai, Numerical study on particle dispersion and deposition in a scaled ventilated chamber using a lattice Boltzmann method, Journal of Aerosol Science 47 (2012) 1–11.
[26]. M. Samari Kermani, S. Jafari, M. Rahnama, M. Salmanzadeh, Particle Tracking in Large Eddy Simulated Turbulent Channel Flow Using Generalized Lattice Boltzmann Method, Particulate Science and Technology 32 (2014) 404–411.
[27]. H. Sajjadi, M. Salmanzadeh, G. Ahmadi, S. Jafari, Investigation of particle deposition and dispersion using Hybrid LES/RANS model based on Lattice Boltzmann method, Scientia Iranica 25 (2018) 3173-3182.
[28]. A .Kohestani, M. Rahnama, S. Jafari, E. Jahanshahi Javaran, Non-circular particle treatment in smoothed profile method: a case study of elliptical particles sedimentation using lattice Boltzmann method, Journal of Dispersion Science and Technology, published online.
[29]. D. d’Humieres, I. Ginzburg, M. Krafczyk, P. Lallemand, L.S.Luo, Multiple-relaxation-time lattice Boltzmann models in three-dimensions, Philosophical Transactiona A 360 (2002) 437–451.
[30]. A. Li, G. Ahmadi, Dispersion and deposition of spherical particles form point sources in a turbulent channel flow. Aerosol Science and Technology 16 (1992) 209–226.
[31]. J.D. Posner, C.R. Buchanan, D. Dunn-Rankin, Measurement and prediction of indoor air flow in a model room. Energy and Buildings 35 (2003) 515–526.
[32]. Z.F. Tian, J.Y. Tu, G.H. Yeoh, R.K.K. Yuen, On the numerical study of contaminant particle concentration in indoor air flow. Building and Environment 41 (2006) 1504–1514.