[1] P.M. Le, D.V. Papavassiliou, A physical picture of the mechanism of turbulent heat transfer from the wall, International Journal of Heat and Mass Transfer, 52(21-22) (2009) 4873-4882.
[2] C. Habchi, T. Lemenand, D. Della Valle, L. Pacheco, O. Le Corre, H. Peerhossaini, Entropy production and field synergy principle in turbulent vortical flows, International Journal of Thermal Sciences, 50(12) (2011) 2365-2376.
[3] C. Habchi, T. Lemenand, D.D. Valle, H. Peerhossaini, Turbulence behavior of artificially generated vorticity, Journal of Turbulence, (11) (2010) N36.
[4] F. Dolati, N. Amanifard, H. Mohaddes Daylami, K. Yazdani, Numerical analysis of the electric field effect on mass transfer through a moist object, Modares Mechanical Engineering, 17(1) (2017) 383-393. (in Persian).
[5] Y. Liao, Z. Feng, X. Zhou, Predicting the pumping effects of electrohydrodynamic (EHD) gas pumps by numerical simulations and quantitative pressure drop vs. flow rate curves, Journal of Electrostatics, 96 (2018) 160-168.
[6] H. Deylami, N. Amanifard, S. Hosseininezhad, F. Dolati, Numerical investigation of the wake flow control past a circular cylinder with Electrohydrodynamic actuator, European Journal of Mechanics-B/Fluids, 66 (2017) 71-80.
[7] F.S. Taghavi, N. Amanifard, H. Deylami, F. Dolati, Numerical investigation of collecting wire electrode effect on the flow field and heat transfer with electrohydrodynamic actuator, Journal of Solid and Fluid Mechanics, 6 (2016) 201-213. (in Persian).
[8] S.S.N. Ayuttaya, C. Chaktranond, P. Rattanadecho, Numerical analysis of electric force influence on heat transfer in a channel flow (theory based on saturated porous medium approach), International Journal of Heat and Mass Transfer, 64 (2013) 361-374.
[9] H.M. Deylami, N. Amanifard, F. Dolati, R. Kouhikamali, K. Mostajiri, Numerical investigation of using various electrode arrangements for amplifying the EHD enhanced heat transfer in a smooth channel, Journal of Electrostatics, 71(4) (2013) 656-665.
[10] M. Peng, T.-H. Wang, X.-D. Wang, Effect of longitudinal electrode arrangement on EHD-induced heat transfer enhancement in a rectangular channel, International Journal of Heat and Mass Transfer, 93 (2016) 1072-1081.
[11] T.-H. Wang, M. Peng, X.-D. Wang, W.-M. Yan, Investigation of heat transfer enhancement by electrohydrodynamics in a double-wall-heated channel, International Journal of Heat and Mass Transfer, 113 (2017) 373-383.
[12] L.-M. Chang, L.-B. Wang, K.-W. Song, D.-L. Sun, J.-F. Fan, Numerical study of the relationship between heat transfer enhancement and absolute vorticity flux along main flow direction in a channel formed by a flat tube bank fin with vortex generators, International Journal of Heat and Mass Transfer, 52(7-8) (2009) 1794-1801.
[13] K.-W. Song, L.-B. Wang, The effectiveness of secondary flow produced by vortex generators mounted on both surfaces of the fin to enhance heat transfer in a flat tube bank fin heat exchanger, Journal of Heat Transfer, 135(4) (2013) 041902.
[14] T. Lemenand, C. Habchi, D. Della Valle, H. Peerhossaini, Vorticity and convective heat transfer downstream of a vortex generator, International Journal of Thermal Sciences, 125 (2018) 342-349.
[15] H. Moayedi, N. Amanifard, H.M. Deylami, Evaluation of using micropolar fluid approach for the EHD-enhanced forced convection through a rectangular channel using multiple electrode arrangements, Applied Thermal Engineering, (2019) 113857.
[16] K. Adamiak, P. Atten, Simulation of corona discharge in point–plane configuration, Journal of electrostatics, 61(2) (2004) 85-98.
[17] H. Moayedi, N. Amanifard, H.M. Deylami, F. Dolati, Numerical investigation of using micropolar fluid model for EHD flow through a smooth channel, Journal of Electrostatics, 87 (2017) 51-63.
[18] N. Oussalah, Y. Zebboudj, Finite-element analysis of positive and negative corona discharge in wire-to-plane system, The European Physical Journal-Applied Physics, 34(3) (2006) 215-223.
[19] M. Havet, Effect of process parameters on the EHD airflow, Journal of Electrostatics, 67(2-3) (2009) 222-227.