[1] Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Applied energy, 88(4) (2011) 981-1007.
[2] T. Wilberforce, A. Alaswad, A. Palumbo, M. Dassisti, A.-G. Olabi, Advances in stationary and portable fuel cell applications, International journal of hydrogen energy, 41(37) (2016) 16509-16522.
[3] R. Huizing, Design and Membrane Selection for Gas to Gas Humidifiers for Fuel Cell Applications, University of Waterloo, 2007.
[4] M.V. Williams, H.R. Kunz, J.M. Fenton, Operation of Nafion®-based PEM fuel cells with no external humidification: influence of operating conditions and gas diffusion layers, Journal of Power Sources, 135(1-2) (2004) 122-134.
[5] R. Glises, D. Hissel, F. Harel, M.-C. Pera, New design of a PEM fuel cell air automatic climate control unit, Journal of Power Sources, 150 (2005) 78-85.
[6] D. Alan, Dynamic Modeling of Two-Phase Heat and Vapor Transfer Characteristics in a Gas-to-Gas Membrane Humidifier for Use in Automotive PEM Fuel Cells, 2009.
[7] S.-K. Park, S.-Y. Choe, S.-h. Choi, Dynamic modeling and analysis of a shell-and-tube type gas-to-gas membrane humidifier for PEM fuel cell applications, International Journal of Hydrogen Energy, 33(9) (2008) 2273-2282.
[8] S. Yun, D. Cha, K.S. Song, S.H. Hong, S.H. Lee, W. Yang, Y. Kim, Numerical analysis on the dynamic response of a plate-and-frame membrane humidifier for PEMFC vehicles under various operating conditions, Open Physics, 16(1) (2018) 641-650.
[9] A.H. Ahmaditaba, E. Afshari, S. Asghari, An experimental study on the bubble humidification method of polymer electrolyte membrane fuel cells, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(12) (2018) 1508-1519.
[10] D. Chen, H. Peng, A thermodynamic model of membrane humidifiers for PEM fuel cell humidification control, Journal of dynamic systems, measurement, and control, 127(3) (2005) 424-432.
[11] S. Yu, S. Im, S. Kim, J. Hwang, Y. Lee, S. Kang, K. Ahn, A parametric study of the performance of a planar membrane humidifier with a heat and mass exchanger model for design optimization, International Journal of Heat and Mass Transfer, 54(7-8) (2011) 1344-1351.
[12] E. Afshari, N.B. Houreh, Performance analysis of a membrane humidifier containing porous metal foam as flow distributor in a PEM fuel cell system, Energy conversion and management, 88 (2014) 612-621.
[13] S. Park, I.-H. Oh, An analytical model of Nafion™ membrane humidifier for proton exchange membrane fuel cells, Journal of Power Sources, 188(2) (2009) 498-501.
[14] S. Kang, K. Min, S. Yu, Two dimensional dynamic modeling of a shell-and-tube water-to-gas membrane humidifier for proton exchange membrane fuel cell, international journal of hydrogen energy, 35(4) (2010) 1727-1741.
[15] T. Cahalan, S. Rehfeldt, M. Bauer, M. Becker, H. Klein, Experimental set-up for analysis of membranes used in external membrane humidification of PEM fuel cells, International Journal of Hydrogen Energy, 41(31) (2016) 13666-13677.
[16] G.-P. Li, R.-h. Qi, L.-Z. Zhang, Performance study of a solar-assisted hollow-fiber-membrane-based air humidification-dehumidification desalination system: Effects of membrane properties, Chemical Engineering Science, 206 (2019) 164-179.
[17] R. Pandey, A. Lele, Modelling of water-to-gas hollow fiber membrane humidifier, Chemical Engineering Science, 192 (2018) 955-971.
[18] C.-Y. Chen, W.-M. Yan, C.-N. Lai, J.-H. Su, Heat and mass transfer of a planar membrane humidifier for proton exchange membrane fuel cell, International Journal of Heat and Mass Transfer, 109 (2017) 601-608.
[19] W.-M. Yan, C.-Y. Chen, Y.-k. Jhang, Y.-H. Chang, P. Amani, M. Amani, Performance evaluation of a multi-stage plate-type membrane humidifier for proton exchange membrane fuel cell, Energy conversion and management, 176 (2018) 123-130.
[20] H. Sun, H. Liu, L.-j. Guo, PEM fuel cell performance and its two-phase mass transport, Journal of Power Sources, 143(1-2) (2005) 125-135.
[21] S.A. Atyabi, E. Afshari, Three-dimensional multiphase model of proton exchange membrane fuel cell with honeycomb flow field at the cathode side, Journal of cleaner production, 214 (2019) 738-748.
[22] N.B. Houreh, E. Afshari, Three-dimensional CFD modeling of a planar membrane humidifier for PEM fuel cell systems, International Journal of Hydrogen Energy, 39(27) (2014) 14969-14979.
[23] Y. Wang, C.-Y. Wang, Simulation of flow and transport phenomena in a polymer electrolyte fuel cell under low-humidity operation, Journal of Power Sources, 147(1-2) (2005) 148-161.
[24] H. Meng, C.-Y. Wang, Electron transport in PEFCs, Journal of the Electrochemical Society, 151(3) (2004) A358-A367.
[25] H. Meng, C.-Y. Wang, Model of two-phase flow and flooding dynamics in polymer electrolyte fuel cells, Journal of the Electrochemical Society, 152(9) (2005) A1733-A1741.
[26] V. Gurau, H. Liu, S. Kakac, Two‐dimensional model for proton exchange membrane fuel cells, AIChE Journal, 44(11) (1998) 2410-2422.
[27] H. Ju, H. Meng, C.-Y. Wang, A single-phase, non-isothermal model for PEM fuel cells, International Journal of Heat and Mass Transfer, 48(7) (2005) 1303-1315.
[28] J.J. Hwang, W.R. Chang, J.K. Kao, W. Wu, Experimental study on performance of a planar membrane humidifier for a proton exchange membrane fuel cell stack, Journal of Power Sources, 215 (2012) 69-76.
[29] J. Monteith, M. Unsworth, Principles of environmental physics: plants, animals, and the atmosphere, Academic Press, 2013.